Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (4): 496-507   https://doi.org/10.1007/s11705-013-1362-1
  REVIEW ARTICLE 本期目录
Significance and strategies in developing delivery systems for bio-macromolecular drugs
Significance and strategies in developing delivery systems for bio-macromolecular drugs
Huining HE1,2, Qiuling LIANG2, Meong Cheol SHIN1, Kyuri LEE1, Junbo GONG3, Junxiao YE3, Quan LIU3, Jingkang WANG3, Victor YANG1,2()
1. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Avbor, MI 48109-1065, USA; 2. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300072, China; 3. State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(414 KB)   HTML
Abstract

Successful development of a new drug is prohibitively expensive, and is estimated to cost approximately $100–500 million US dollars for a single clinical drug. Yet, a newly developed drug can only enjoy its patent protection for 18 years, meaning that after this protected time period, any company can manufacture this product and thus the profit generated by this drug entity would reduce dramatically. Most critically, once a drug is being synthesized, its physical, chemical, and biological attributes such as bioavailability and in vivo pharmacokinetics are all completely fixed and cannot be changed. In principal and practice, only the application of an appropriately designed drug delivery system (DDS) is able to overcome such limitations, and yet the cost of developing a novel drug delivery system is less than 10% of that of developing a new drug. Because of these reasons, the new trend in pharmaceutical development has already begun to shift from the single direction of developing new drugs in the past to a combined mode of developing both new drugs and innovative drug delivery systems in this century. Hence, for developing countries with relatively limited financial resources, a smart strategic move would be to focus on the development of new DDS, which has a significantly higher benefit/risk ratio when comparing to the development of a new drug.

Because of the unmatched reaction efficiency and a repetitive action mode, the therapeutic activity of a single bio-macromolecular drug (e.g., protein toxins, gene products, etc.) is equivalent to about 106–108 of that from a conventional small molecule anti-cancer agent (e.g., doxorubicin). Hence, bio-macromolecular drugs have been recognized around the world as the future “drug-of-choice”. Yet, among the>10000 drugs that are currently available, only ~150 of them belong to these bio-macromolecular drugs (an exceedingly low 1.2%), reflecting the difficulties of utilizing these agents in clinical practice. In general, the bottleneck limitations of these bio-macromolecular drugs are two-fold: (1) the absence of a preferential action of the drug on tumor cells as opposed to normal tissues, and (2) the lack of ability to cross the tumor cell membrane. In this review, we provide strategies of how to solve these problems simultaneously and collectively via the development of innovative drug delivery systems. Since worldwide progress on bio-macromolecular therapeutics still remains in the infant stage and thus open for an equal-ground competition, we wish that this review would echo the desire to industrialized countries such as China to set up its strategic plan on developing delivery systems for these bio-macromolecular drugs, thereby realizing their clinical potential.

Key wordsdelivery systems    bio-macromolecular drugs    cell penetrating peptides
收稿日期: 2013-10-20      出版日期: 2013-12-05
Corresponding Author(s): YANG Victor,Email:vcyang@med.umich.edu   
 引用本文:   
. Significance and strategies in developing delivery systems for bio-macromolecular drugs[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4): 496-507.
Huining HE, Qiuling LIANG, Meong Cheol SHIN, Kyuri LEE, Junbo GONG, Junxiao YE, Quan LIU, Jingkang WANG, Victor YANG. Significance and strategies in developing delivery systems for bio-macromolecular drugs. Front Chem Sci Eng, 2013, 7(4): 496-507.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1362-1
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I4/496
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Allen T M, Cullis P R. Drug delivery systems: entering the mainstream. Science , 2004, 303(5665): 1818–1822
doi: 10.1126/science.1095833
2 Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews , 2002, 54(5): 631–651
doi: 10.1016/S0169-409X(02)00044-3
3 Dreher M R, Liu W, Michelich C R, Dewhirst M W, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute , 2006, 98(5): 335–344
doi: 10.1093/jnci/djj070
4 Maeda H, Seymour L W, Miyamoto Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo. Bioconjugate Chemistry , 2002, 3(5): 351–362
doi: 10.1021/bc00017a001
5 Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Critical Reviews in Oncology/Hematology , 1995, 18(3): 207–231
doi: 10.1016/1040-8428(94)00131-C
6 Defoort J P, Nardelli B, Huang W, Ho D D, Tam J P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proceedings of the National Academy of Sciences of the United States of America , 1992, 89(9): 3879–3883
doi: 10.1073/pnas.89.9.3879
7 Hamajima K, Bukawa H, Fukushima J, Kawamoto S, Kaneko T, Sekigawa K I, Tanaka S I, Tsukuda M, Okuda K. A macromolecular multicomponent peptide vaccine prepared using the glutaraldehyde conjugation method with strong immunogenicity for HIV-1. Clinical Immunology and Immunopathology , 1995, 77(3): 374–379
doi: 10.1006/clin.1995.1165
8 Greenberg S, Frishman W. Co-enzyme Q10: A new drug for cardiovascular disease. The Journal of Clinical Pharmacology , 1990, 30(7): 596–608
doi: 10.1002/j.1552-4604.1990.tb01862.x
9 Torchilin V P. Targeting of drugs and drug carriers within the cardiovascular system. Advanced Drug Delivery Reviews , 1995, 17(1): 75–101
doi: 10.1016/0169-409X(95)00042-6
10 Chang C-T L, Liou H-Y, Tang H L, Sung H Y. Activation, purification and properties of beta-amylase from sweet potatoes (Ipomoea batatas). Biotechnology and Applied Biochemistry , 1996, 24: 13–18
11 Noda T, Furuta S, Suda I. Sweet potato [beta]-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose. Carbohydrate Polymers , 2001, 44(3): 189–195
doi: 10.1016/S0144-8617(00)00226-5
12 Thorpe P E, Burrows F J. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Research and Treatment , 1995, 36(2): 237–251
doi: 10.1007/BF00666044
13 Bandres E, Andion E, Escalada A, Honorato B, Catalan V, Cubedo E, Cordeu L, Garcia F, Zarate R, Zabalegui N, Garcia-Foncillas J. Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. Journal of Neuro-Oncology , 2005, 73(3): 189–198
doi: 10.1007/s11060-004-5174-5
14 Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analytical Biochemistry , 1992, 205(2): 263–270
doi: 10.1016/0003-2697(92)90433-8
15 Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research , 2005, 33(20): e179
doi: 10.1093/nar/gni178
16 Gibson U E, Heid C A, Williams P M. A novel method for real time quantitative RT-PCR. Genome Research , 1996, 6(10): 995–1001
doi: 10.1101/gr.6.10.995
17 Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Research , 1995, 23(6): 1087–1088
doi: 10.1093/nar/23.6.1087
18 Syrigos K N, Epenetos A A. Antibody directed enzyme prodrug therapy (ADEPT): A review of the experimental and clinical considerations. Anticancer Research , 1999, 19(1A): 605–613
19 Bagshawe K D. Antibody directed enzymes revive anti-cancer prodrugs concept. British Journal of Cancer , 1987, 56(5): 531–532
doi: 10.1038/bjc.1987.237
20 Liang J F, Li Y T, Song H, Park Y J, Naik S S, Yang V C. ATTEMPTS: A heparin/protamine-based delivery system for enzyme drugs. Journal of Controlled Release , 2002, 78(1–3): 67–79
doi: 10.1016/S0168-3659(01)00484-9
21 Doxorubicin Hydrochloride. In: AHFS Drug Information, American Hospital Formulary Service, Bethesda, MD . 2001, 950–960
22 Liang J F, Park Y J, Song H, Li Y T, Yang V C. ATTEMPTS: A heparin/protamine-based prodrug approach for delivery of thrombolytic drugs. Journal of Controlled Release , 2001, 72(1–3): 145–156
doi: 10.1016/S0168-3659(01)00270-X
23 Foldvari M, Mezei C, Mezei M. Intracellular delivery of drugs by liposomes containing P0 glycoprotein from peripheral nerve myelin into human M21 melanoma cells. Journal of Pharmaceutical Sciences , 1991, 80(11): 1020–1028
doi: 10.1002/jps.2600801105
24 McNeil P L, Murphy R F, Lanni F, Taylor D L. A method for incorporating macromolecules into adherent cells. The Journal of Cell Biology , 1984, 98(4): 1556–1564
doi: 10.1083/jcb.98.4.1556
25 Chakrabarti R, Wylie D E, Schuster S M. Transfer of monoclonal antibodies into mammalian cells by electroporation. Journal of Biological Chemistry , 1989, 264(26): 15494–15500
26 Stenmark H, Moskaug J O, Madshus I H, Sandvig K, Olsnes S. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol. The Journal of Cell Biology , 1991, 113(5): 1025–1032
doi: 10.1083/jcb.113.5.1025
27 Basu S K. Receptor-mediated endocytosis of macromolecular conjugates in selective drug delivery. Biochemical Pharmacology , 1990, 40(9): 1941–1946
doi: 10.1016/0006-2952(90)90222-7
28 Wu G Y, Wu C H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry , 1988, 27(3): 887–892
doi: 10.1021/bi00403a008
29 Mellman I. Endocytosis and molecular sorting. Annual Review of Cell and Developmental Biology , 1996, 12(1): 575–625
doi: 10.1146/annurev.cellbio.12.1.575
30 Wu A M, Yazaki P J. Designer genes: Recombinant antibody fragments for biological imaging. The Quarterly Journal of Nuclear Medicine , 2000, 44(3): 268–283
31 Jain R K, Cook A W, Steele E L. Haemodynamic and transport barriers to the treatment of solid tumours. International Journal of Radiation Biology , 1991, 60(1–2): 85–100
doi: 10.1080/09553009114551621
32 Juweid M, Neumann R, Paik C, Perez-Bacete M J, Sato J, van Osdol W, Weinstein J N. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Research , 1992, 52(19): 5144–5153
33 Fawell S, Seery J, Daikh Y, Moore C, Chen L L, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America , 1994, 91(2): 664–668
doi: 10.1073/pnas.91.2.664
34 Jain R K, Baxter L T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Research , 1988, 48: 7022–7032
35 Laguzza B C, Nichols C L, Briggs S L, Cullinan G J, Johnson D A, Starling J J, Baker A L, Bumol T F, Corvalan J R. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: Design, preparation, and representative in vivo activity. Journal of Medicinal Chemistry , 1989, 32(3): 548–555
doi: 10.1021/jm00123a007
36 Trouet A, Masquelier M, Baurain R, Campeneere D D. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: In vitro and in vivo studies. Proceedings of the National Academy of Sciences of the United States of America , 1982, 79(2): 626–629
doi: 10.1073/pnas.79.2.626
37 Schneck D, Butler F, Dugan W, Littrel D, Dorrbecker S. Phase I study with a murine monoclonal antibody-Vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Antibody Immunoconjugates Radiopharmacology , 1989, 2: 93–100
38 Singh M, Ghose T, Kralovec J, Blair A H, Belitsky P. Inhibition of human renal cancer by monoclonal antibody-linked methotrexate in an ascites tumor model. Cancer Immunology, Immunotherapy , 1991, 32(5): 331–334
doi: 10.1007/BF01789052
39 Liu C, Tadayoni B M, Bourret L A, Mattocks K M, Derr S M, Widdison W C, Kedersha N L, Ariniello P D, Goldmacher V S, Lambert J M, Blattler W A, Chari R V. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proceedings of the National Academy of Sciences of the United States of America , 1996, 93(16): 8618–8623
doi: 10.1073/pnas.93.16.8618
40 Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie , 1984, 123(1): 457–485
doi: 10.1002/apmc.1984.051230121
41 Bagshawe K D. Antibody directed enzymes revive anti-cancer prodrugs concept. British Journal of Cancer , 1987, 56(5): 531–532
doi: 10.1038/bjc.1987.237
42 Duncan R. Drug-polymer conjugates: Potential for improved chemotherapy. Drug Research , 1992, 3(3): 175–210
43 Maeda H, Seymour L W, Miyamoto Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo. Bioconjugate Chemistry , 1992, 3(5): 351–362
doi: 10.1021/bc00017a001
44 Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release , 2000, 65(1-2): 271–284
doi: 10.1016/S0168-3659(99)00248-5
45 Seymour L W. Passive tumor targeting of soluble macromolecules and drug conjugates. Critical Reviews in Therapeutic Drug Carrier Systems , 1992, 9(2): 135–187
46 Moreira J N, Gaspar R, Allen T M. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochimica et Biophysica Acta , 2001, 1515(2): 167–176
doi: 10.1016/S0005-2736(01)00411-4
47 Kopecek J, Kopeckova P, Minko T, Lu Z R. HPMA copolymer-anticancer drug conjugates: Design, activity, and mechanism of action. European Journal of Pharmaceutics and Biopharmaceutics , 2000, 50(1): 61–81
doi: 10.1016/S0939-6411(00)00075-8
48 Rowley G L, Rubenstein K E, Huisjen J, Ullman E F. Mechanism by which antibodies inhibit hapten-malate dehydrogenase conjugates. An enzyme immunoassay for morphine. Journal of Biological Chemistry , 1975, 250(10): 3759–3766
49 Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell , 1988, 55(6): 1179–1188
doi: 10.1016/0092-8674(88)90262-0
50 Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell , 1988, 55(6): 1189–1193
doi: 10.1016/0092-8674(88)90263-2
51 Angelastro J M, Canoll P D, Kuo J, Weicker M, Costa A, Bruce J N, Greene L A. Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene , 2006, 25(6): 907–916
doi: 10.1038/sj.onc.1209116
52 Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry , 1994, 269(14): 10444–10450
53 Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell , 1997, 88(2): 223–233
doi: 10.1016/S0092-8674(00)81843-7
54 Futaki S, Nakase I, Suzuki T, Futaki Z, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: Flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry , 2002, 41(25): 7925–7930
doi: 10.1021/bi0256173
55 Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular low protein delivery: In vitro and in vivo study. FASEB Journal , 2005, 19(11): 1555–1557
56 Chang L C, Lee H F, Yang Z Q, Yang V C. Low molecular weight protamine (LMWP) as nontoxic heparin/LMWH antidote (I): Preparation and characterization. AAPS PharmSci , 2001, 3(2): E17
57 Chang L C, Liang J F, Lee H F, Lee L M, Yang V C. Low molecular weight protamine (LMWP) as nontoxic heparin/LMWH antidote (II): In vitro evaluation of efficacy and toxicity. AAPS PharmSci , 2001, 3(2): E18
58 Lee L M, Chang L C, Wrobleski S, Wakefield T W, Yang V C. Low molecular weight protamine as nontoxic heparin/LMWH antidote (III): Preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci , 2001, 3(2): E19
59 Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences , 2000, 21(2): 45–48
doi: 10.1016/S0165-6147(99)01429-7
60 Becker-Hapak M, McAllister S S, Dowdy S F. TAT-mediated protein transduction into mammalian cells. Methods (San Diego, Calif.) , 2001, 24(3): 247–256
doi: 10.1006/meth.2001.1186
61 Torchilin V P, Rammohan R, Weissig V, Levchenko T S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proceedings of the National Academy of Sciences of the United States of America , 2001, 98(15): 8786–8791
doi: 10.1073/pnas.151247498
62 Josephson L, Tung C H, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry , 1999, 10(2): 186–191
doi: 10.1021/bc980125h
63 Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science , 1999, 285(5433): 1569–1572
doi: 10.1126/science.285.5433.1569
64 Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y. Possible existence of common internalization mechanisms among arginine-rich peptides. Journal of Biological Chemistry , 2002, 277(4): 2437–2443
doi: 10.1074/jbc.M110017200
66 Pastan I, Chaudhary V, FitzGerald D J. Recombinant toxins as novel therapeutic agents. Annual Review of Biochemistry , 1992, 61(1): 331–354
doi: 10.1146/annurev.bi.61.070192.001555
67 Tsui B, Singh V K, Liang J F, Yang V C. Reduced reactivity towards anti-protamine antibodies of a low molecular weight protamine analogue. Thrombosis Research , 2001, 101(5): 417–420
doi: 10.1016/S0049-3848(00)00427-8
68 Liang J F, Zhen L, Chang L C, Yang V C. A less toxic heparin antagonist—low molecular weight protamine. Biochemistry (Moscow) , 2003, 68(1): 116–120
doi: 10.1023/A:1022109905487
69 Chertok B, David A E, Moffat B A, Yang V C. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials , 2009, 30(35): 6780–6787
doi: 10.1016/j.biomaterials.2009.08.040
70 Yu F, Yang V C. Size-tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications. Journal of Biomedical Materials Research Part A , 2010, 92(4): 1468–1475
71 Yu F, Zhang L, Huang Y, Sun K, David A E, Yang V C. The magnetophoretic mobility and superpara-magnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials , 2010, 31(22): 5842–5848
doi: 10.1016/j.biomaterials.2010.03.072
72 Huang Y, Park Y S, Wang J, Moon C, Kwon Y M, Chung H S, Park Y J, Yang V C. ATTEMPTS system: A macromolecular prodrug strategy for cancer drug delivery. Current Pharmaceutical Design , 2010, 16(21): 2369–2376
doi: 10.2174/138161210791920441
73 Chertok B, David A E, Yang V C. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. Journal of Controlled Release , 2011, 155(3): 393–399
doi: 10.1016/j.jconrel.2011.06.033
74 Chertok B, David A E, Yang V C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials , 2010, 31(24): 6317–6324
doi: 10.1016/j.biomaterials.2010.04.043
76 Chertok B, Cole A J, David A E, Yang V C. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Molecular Pharmaceutics , 2010, 7(2): 375–385
doi: 10.1021/mp900161h
77 Chertok B, David A E, Yang V C. Magnetically-enabled and MR-monitored selective brain tumor protein delivery in rats via magnetic nanocarriers. Biomaterials , 2011, 32(26): 6245–6253
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed