Application of membrane separation technology in post-combustion carbon dioxide capture process
Mo LI,Xiaobin JIANG,Gaohong HE()
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded
RubinE S, MantripragadaH, MarksA, VersteegP, KitchinJ. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 2012, 38(5): 630–671 doi: 10.1016/j.pecs.2012.03.003
2
HerzogH J. Peer reviewed: What future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35(7): 148–153 doi: 10.1021/es012307j
3
DavisonJ, ThambimuthuK. Technologies for capture of carbon dioxide. In: Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme. 2004, 3–13
4
SteeneveldtR, BergerB, TorpT. CO2 Capture and storage: Closing the knowing-doing gap. Chemical Engineering Research & Design, 2006, 84(9): 739–763 doi: 10.1205/cherd05049
5
DukeM C, LadewigB, SmartS, RudolphV, Diniz da CostaJ C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2009, 4(2): 184–195 doi: 10.1007/s11705-009-0234-1
6
OexmannJ, KatherA. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control, 2010, 4(1): 36–43 doi: 10.1016/j.ijggc.2009.09.010
7
FavreE. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171(3): 782–793 doi: 10.1016/j.cej.2011.01.010
8
GraniteE J, PennlineH W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470–5476 doi: 10.1021/ie020251b
9
PowellC E, QiaoG G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49 doi: 10.1016/j.memsci.2005.12.062
10
FavreE. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59 doi: 10.1016/j.memsci.2007.02.007
11
BrunettiA, ScuraF, BarbieriG, DrioliE. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125 doi: 10.1016/j.memsci.2009.11.040
12
JolyC, GoizetS, SchrotterJ C, SanchezJ, EscoubesM. Sol-gel polyimide-silica composite membrane: gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74 doi: 10.1016/S0376-7388(97)00008-2
13
RobesonL M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400 doi: 10.1016/j.memsci.2008.04.030
14
Cecopieri-GómezM L, Palacios-AlquisiraJ, DomínguezJ M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. Journal of Membrane Science, 2007, 293(1–2): 53–65 doi: 10.1016/j.memsci.2007.01.034
15
DuN Y, ParkH B, Dal-CinM M, GuiverM D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5(6): 7306–7322 doi: 10.1039/c1ee02668b
16
HuL, XuX L, ColemanM R. Impact of H+ ion beam irradiation on Matrimid (R).II.Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103(3): 1670–1680 doi: 10.1002/app.25359
17
SternS A. Polymers for gas separations—the next decade. Journal of Membrane Science, 1994, 94(1): 1–65 doi: 10.1016/0376-7388(94)00141-3
18
HirayamaY, KaseY, TaniharaR, SumiyamaY, KusukiY, HarayaK. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science, 1999, 160(1): 87–99 doi: 10.1016/S0376-7388(99)00080-0
19
PotreckJ, NijmeijerK, KosinskiT, WesslingM. Mixed water vapor/gas transport through the rubbery polymer PEBAX (R) 1074. Journal of Membrane Science, 2009, 338(1–2): 11–16 doi: 10.1016/j.memsci.2009.03.051
20
HashemifardS A, IsmailA F, MatsuuraT. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical Engineering Journal, 2011, 170(1): 316–325 doi: 10.1016/j.cej.2011.03.063
21
HusainS, KorosW J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207 doi: 10.1016/j.memsci.2006.11.016
22
LiJ R, SculleyJ, ZhouH C. Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932 doi: 10.1021/cr200190s
23
D'AlessandroD M, SmitB, LongJ R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition in English, 2010, 49(35): 6058–6082 doi: 10.1002/anie.201000431
24
DaiY, JohnsonJ R, KarvanO, ShollD S, KorosW J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401–402: 76–82 doi: 10.1016/j.memsci.2012.01.044
25
BrownA J, JohnsonJ R, LydonM E, KorosW J, JonesC W, NairS. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angewandte Chemie International Edition, 2012, 51(42): 10615–10618 doi: 10.1002/anie.201206640
26
ParkH B, JungC H, LeeY M, HillA J, PasS J, MudieS T, van WagnerE, FreemanB D, CooksonD J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258 doi: 10.1126/science.1146744
27
KimS, HanS H, LeeY M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403: 169–178 doi: 10.1016/j.memsci.2012.02.041
28
ParkH B, HanS H, JungC H, LeeY M, HillA J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24 doi: 10.1016/j.memsci.2009.09.037
29
HuangJ, ZouJ, HoW S W. Carbon dioxide capture using a CO2-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008, 47(4): 1261–1267 doi: 10.1021/ie070794r
30
MatsuyamaH, TeradaA, NakagawaraT, KitamuraY, TeramotoM. Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science, 1999, 163(2): 221–227 doi: 10.1016/S0376-7388(99)00183-0
31
KimT J, LiB A, HaggM B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science. Part B, Polymer Physics, 2004, 42(23): 4326–4336 doi: 10.1002/polb.20282
32
WangM, YangD, WangZ, WangJ, WangS. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2009, 4(2): 127–132 doi: 10.1007/s11705-009-0231-4
33
Andrew LeeS, StevensG W, KentishS E. Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429(0): 349–354 doi: 10.1016/j.memsci.2012.11.047
34
LozanoL J, GodinezC, de los RiosA P, Hernandez-FernandezF J, Sanchez-SegadoS, AlguacilF J. Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 2011, 376(1–2): 1–14 doi: 10.1016/j.memsci.2011.03.036
35
ZhaoW, HeG, NieF, ZhangL, FengH, LiuH. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. Journal of Membrane Science, 2012, 411–412: 73–80 doi: 10.1016/j.memsci.2012.04.016
36
EisamanM D, AlvaradoL, LarnerD, WangP, GargB, LittauK A. CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(4): 1319–1328 doi: 10.1039/c0ee00303d
37
EisamanM D, AlvaradoL, LarnerD, WangP, LittauK A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(10): 4031–4037 doi: 10.1039/c1ee01336j