Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (1): 8-19   https://doi.org/10.1007/s11705-014-1411-4
  本期目录
New nanostructured sorbents for desulfurization of natural gas
Lifeng WANG, Ralph T. YANG()
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
 全文: PDF(546 KB)   HTML
Abstract

Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal-oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.

Key wordsdesulfurization    natural gas desulfurization    hydrogen sulfide sorbent    amine-silica sorbent
收稿日期: 2013-12-06      出版日期: 2014-03-05
Corresponding Author(s): Ralph T. YANG   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2014, 8(1): 8-19.
Lifeng WANG, Ralph T. YANG. New nanostructured sorbents for desulfurization of natural gas. Front. Chem. Sci. Eng., 2014, 8(1): 8-19.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1411-4
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I1/8
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Adsorbate ΔE on Cu(I)Ya ΔE on AgYa ΔE on Cu(II)Ya
H2S –14.0 –11.4 –9.5
DMS –11.3 –7.9 –6.6
Adsorbate ΔE on Cu(I)Zb ΔE on AgZb ΔE on Cu(II)Zb
H2S –17.5 –16.1 Nil
DMS –13.2 –7.8 –1.3
Tab.1  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 H W Haring. Industrial Gas Processing. Weinheim: Wiley-VCH, 2008, 217–238
2 D L George, E C Bowles. Shale gas measurement and associated issues.
3 M L Posey, K G Tapperson, G T Rochelle. A simple model for prediction of acid gas solubilities in alkanolamines. Gas Separation & Purification, 1996, 10(3): 181–186
https://doi.org/10.1016/0950-4214(96)00019-9
4 F Pani, A Gaunand, D Richon, R Cadours, C Bouallou. Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. Journal of Chemical & Engineering Data, 1997, 42(5): 865–870
https://doi.org/10.1021/je970062d
5 A L Kohl, R Nielsen. Gas Purification. Houston: Gulf Publishing Company, 1997, 40–186
6 E S Kikkinides, V I Sikavitsas, R T Yang. Natural gas desulfurization by adsorption: Feasibility and multiplicity of cyclic steady states. Industrial & Engineering Chemistry Research, 1995, 34(1): 255–262
https://doi.org/10.1021/ie00040a027
7 R T Yang. Gas Separation by Adsorption Processes. London: Imperial College Press, 1997, 201–36
8 V Shah, M Quale. Dow Chemical Company, private communications, June, 2013
9 R T Yang. Adsorbents: Fundamentals and Applications. New York: Wiley, 2003, 131–156
10 H Y Huang, R T Yang, D Chinn, C L Munson. Amine grafted MCM-48 and silica xerogel as superior sorbents for acidic gas (H2S and CO2) removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427–2433
https://doi.org/10.1021/ie020440u
11 X Ma, X Wang, C Song. Molecular basket sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009, 131(16): 5777–5783
https://doi.org/10.1021/ja8074105
12 Y Belmabkhout, G D Weireld, A Sayari. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir, 2009, 25(23): 13275–13278
https://doi.org/10.1021/la903238y
13 Q Xue, Y S Liu. Removal of minor concentration of H2S on MDEA-modified SBA-15 for gas purification. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 169–173
https://doi.org/10.1016/j.jiec.2011.11.005
14 B Hunger, S Matysik, M Heuchel, E Geidel, H Toufar. Adsorption of water on zeolites of different types. Journal of Thermal Analysis, 1997, 49(1): 553–565
https://doi.org/10.1007/BF01987483
15 S Tanada, K Bok. Adsorption behavior hydrogen sulfide inside micropores of molecular sieve carbon 5A and molecular sieve zeolite 5A. Bulletin of Environmental Contamination and Toxicology, 1982, 29(5): 624–629
https://doi.org/10.1007/BF01669632
16 B Steuten, C Pasel, M Luckas, D Bathen. Trace level adsorption of toxic sulfur compounds, carbon dioxide, and water from methane. Journal of Chemical & Engineering Data, 2013, 58(9): 2465–2473
https://doi.org/10.1021/je400298r
17 A Bagreev, T J Bandosz. Role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Industrial & Engineering Chemistry Research, 2002, 41(4): 672–679
https://doi.org/10.1021/ie010599r
18 A Bagreev, T J Bandosz. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & Engineering Chemistry Research, 2005, 44(3): 530–538
https://doi.org/10.1021/ie049277o
19 H L Chiang, J H Tsai, C L Tsai, Y I C H U N Hsu. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S and CH3SH gas. Separation Science and Technology, 2000, 35(6): 903–918
https://doi.org/10.1081/SS-100100200
20 T J Bandosz. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of Colloid and Interface Science, 2002, 246(1): 1–20
https://doi.org/10.1006/jcis.2001.7952
21 L Hamon, C Serre, T Devic, T Loiseau, F Millange, G Ferey, G D Weireld. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. Journal of the American Chemical Society, 2009, 131(25): 8775–8777
https://doi.org/10.1021/ja901587t
22 Y Li, R T Yang. Gas adsorption and storage in metal-organic framework MOF-177. Langmuir, 2007, 23(26): 12937–12944
https://doi.org/10.1021/la702466d
23 L Wang, A J Jr Lachawiec, R T Yang. Nanostructured adsorbents for hydrogen storage at ambient temperature: High-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3(46): 23935–23952
https://doi.org/10.1039/c3ra44216k
24 S Han, Y Huang, T Watanabe, S Nair, K S Walton, D S Sholl, M Carson. MOF stability and gas adsorption as a function of exposure to water, humid air, SO2 and NO2. Microporous and Mesoporous Materials, 2013, 173: 8691
https://doi.org/10.1016/j.micromeso.2013.02.002
25 L F Wang, R T Yang. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catalysis Reviews. Science and Engineering, 2010, 52(4): 411461
https://doi.org/10.1080/01614940.2010.520265
26 P R Westmoreland, D P Harrison. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environmental Science & Technology, 1976, 10(7): 659–661
https://doi.org/10.1021/es60118a010
27 M Xue, R Chitrakar, K Sakane, K Ooi. Screening of adsorbents for removal of H2S at room temperature. Green Chemistry, 2003, 5(5): 529534
28 T Ko, H Chu, L Chaung. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere, 2005, 58(4): 467474
https://doi.org/10.1016/j.chemosphere.2004.09.029
29 C C Huang, C H Chen, S M Chu. Effect of moisture on H2S adsorption by copper impregnated activated carbon. Journal of Hazardous Materials, 2006, 136(3): 866873
https://doi.org/10.1016/j.jhazmat.2006.01.025
30 D Nguyen-Thanh, T J Bandosz. Effect of transition-metal cations on the adsorption of H2S in modified pillared clays. Journal of Physical Chemistry B, 2003, 107(24): 5812–5817
https://doi.org/10.1021/jp0223509
31 C L Garcia, J A Lercher. Adsorption of hydrogen sulfide on ZSM-5 zeolites. Journal of Physical Chemistry, 1992, 96(5): 2230–2235
https://doi.org/10.1021/j100184a038
32 L Gasper-Galvin, A T Atimtay, R P Gupta. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166
https://doi.org/10.1021/ie930439i
33 T Kyotani, H Kawashima, A Tomita, A Palmer, E Furimsky. Removal of H2S from hot gas in the presence of Cu-containing sorbents. Fuel, 1989, 68(1): 74–79
https://doi.org/10.1016/0016-2361(89)90014-8
34 D Montes, E Tocuyo, E González, D Rodríguez, R Solano, R Atencio, M A Ramos, A. Solano Moronta, R Atencio, M A Ramos, A Moronta. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous and Mesoporous Materials, 2013, 168: 111–120
https://doi.org/10.1016/j.micromeso.2012.09.018
35 R E Ayala, D W Marsh. Characterization and long-range reactivity of zinc ferrite in high-temperature desulfurization processes. Industrial & Engineering Chemistry Research, 1991, 30(1): 55–60
https://doi.org/10.1021/ie00049a009
36 T Baird, P J Denny, R Hoyle, F Mcmonagle, D Stirling, J Tweedy. Modified zinc-oxide absorbents for low-temperature gas desulfurization. Journal of the Chemical Society, Faraday Transactions, 1992, 88(22): 3375–3382
https://doi.org/10.1039/ft9928803375
37 L Gasper-Galvin, A T Atimtay, R P Gupta. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166
https://doi.org/10.1021/ie930439i
38 K Polychronopoulou, J L G Fierro, A M Efstathiou. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental, 2005, 57(2): 125–137
https://doi.org/10.1016/j.apcatb.2004.10.017
39 H Y Yang, B Tatarchuk. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(11): 2898–2904
https://doi.org/10.1002/aic.12201
40 G Israelson. Results of testing various natural gas desulfurization adsorbents. Journal of Materials Engineering and Performance, 2004, 13(3): 282–286
https://doi.org/10.1361/10599490419199
41 D L King, J C Birnbaum, P Singh. Sulfur removal from pipeline natural gas fuel: Application to fuel cell power generation systems. Pacific Northwest National Laboratory. Fuel Cell Seminar, Palm Springs, CA, November 18–21, 2002
42 S Satokawa, Y Kobayashi, H Fujiki. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Applied Catalysis B: Environmental, 2005, 56(1–2): 51–56
https://doi.org/10.1016/j.apcatb.2004.06.022
43 G O Alptekin. Sorbents for desulfurization of natural gas, LPG and transportation Fuels. Sixth Annual SECA Workshop, Pacific Grove, CA, 2004-April-21
44 D Crespo, G Qi, Y Wang, F H Yang, R T Yang. Superior sorbent for natural gas desulfurization. Industrial & Engineering Chemistry Research, 2008, 47(4): 1238–1244
https://doi.org/10.1021/ie071145i
45 M Lasperas, T Llorett, L Chaves, I Rodriguez, A Cauvel, D Brunel. Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions. Studies in Surface Science and Catalysis, 1997, 108: 75–82
https://doi.org/10.1016/S0167-2991(97)80890-7
46 E Angeletti, C Canepa, G Martinetti, P Venturello. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Letters, 1988, 29(18): 2261–2264
https://doi.org/10.1016/S0040-4039(00)86727-1
47 R L Burwell, O Leal. Modified silica-gels as selective adsorbents for sulfur-dioxide. Journal of the Chemical Society. Chemical Communications, 1974, 9(9): 342–343
https://doi.org/10.1039/c39740000342
48 O Leal, C Bolivar, C Ovalles, J J Garcia, Y Espidel. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorganica Chimica Acta, 1995, 240(1–2): 183–189
https://doi.org/10.1016/0020-1693(95)04534-1
49 S H Choi, J H Drese, C W Jones. Adsorbent materials for CO2 capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9): 796–854
https://doi.org/10.1002/cssc.200900036
50 D M D’Alessandro, B Smit, J R Long. Carbon dioxide capture: Prospect for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082
https://doi.org/10.1002/anie.201000431
51 P Bollini, S A Didas, C W Jones. Amine-oxide hybrid materials for acid gas separations. Journal of Materials Chemistry, 2011, 21(39): 15100–15120
https://doi.org/10.1039/c1jm12522b
52 A Samanta, A Zhao, G K H Shimazu, P Sarkar, R Gupta. Post-combustion CO2 capture using solid sorbents: A review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463
https://doi.org/10.1021/ie200686q
53 J S Beck, J C Vartuli, W J Roth, M E Leonowicz, C T Kresge, K D Schmitt, C T W Chu, D H Olson, E W Sheppard, S B McCullen, J B Higgins, J L Schlenker. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843
https://doi.org/10.1021/ja00053a020
54 C T Kresge, M E Leonowicz, W J Roth, J C Vartuli, J S Beck. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712
https://doi.org/10.1038/359710a0
55 A Sayari, Y Yang, M Kruk, M Jaroniec. Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures. Journal of Physical Chemistry B, 1999, 103(18): 3651–3658
https://doi.org/10.1021/jp984504j
56 Q Chen, F Fan, D Long, X Liu, X Liang, W Qiao, L Ling. Poly(ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal. Industrial & Engineering Chemistry Research, 2010, 49(22): 11408–11414
https://doi.org/10.1021/ie101464f
57 L Wang, R T Yang. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. Journal of Physical Chemistry C, 2011, 115(43): 21264–21272
https://doi.org/10.1021/jp206976d
58 L T Zhuravlev. Surface characterization of amorphous silica—A review of work from the former USSR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 74(1): 71–90
https://doi.org/10.1016/0927-7757(93)80399-Y
59 J B Perry. Infrared study of OH and NH2 groups on the surface of a dry silica aero-gel. 1966. Journal of Physical Chemistry, 1966, 70(9): 2937–2945
https://doi.org/10.1021/j100881a037
60 L T Zhuravlev. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1–3): 1–38
https://doi.org/10.1016/S0927-7757(00)00556-2
61 D Y Zhao, J L Feng, Q S Huo, N Melosh, G H Fredrickson, B F Chemelka, G D Stucky. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548
62 K Cassiers, P Van Der Voort, E F Vansant. Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, 24(24): 2489–2490
https://doi.org/10.1039/b007297o
63 B Z Tian, X Y Liu, C Z Yu, F Gao, Q Luo, S H Xie, B Tu, D Y Zhao. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, 11(11): 1186–1187
https://doi.org/10.1039/b202180c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed