Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances
Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances
Huan GU1, Dacheng REN1,2()
1. Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA; 2. Department of Civil and Environmental Engineering, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.
. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances[J]. Frontiers of Chemical Science and Engineering, 2014, 8(1): 20-33.
Huan GU, Dacheng REN. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front Chem Sci Eng, 2014, 8(1): 20-33.
Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases , 2001, 33(8): 1387–1392 doi: 10.1086/322972
2
Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley , 2000: 1–12
3
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials , 2011, 23(6): 690–718 doi: 10.1002/adma.201001215
4
Davey M E, O'Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews , 2000, 64(4): 847–867 doi: 10.1128/MMBR.64.4.847-867.2000
5
Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases , 2002, 8(9): 881–890 doi: 10.3201/eid0809.020063
6
Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews , 2002, 15(2): 155–166 doi: 10.1128/CMR.15.2.155-166.2002
7
Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology , 2002, 56(1): 187–209 doi: 10.1146/annurev.micro.56.012302.160705
8
Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology , 2005, 156(5–6): 626–633 doi: 10.1016/j.resmic.2005.02.005
9
Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature , 1995, 373(6510): 164–167 doi: 10.1038/373164a0
10
Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology , 2004, 53(5): 1545–1557 doi: 10.1111/j.1365-2958.2004.04226.x
11
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews , 2009, 73(2): 310–347 doi: 10.1128/MMBR.00041-08
12
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology , 2007, 34(9): 577–588 doi: 10.1007/s10295-007-0234-4
13
Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology , 1971, 68(3): 337–348 doi: 10.1099/00221287-68-3-337
14
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE , 2012, 7(10): e46718 doi: 10.1371/journal.pone.0046718
15
Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society , 2011, 36(5): 347–355
16
Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology , 2010, 59(3): 253–268
17
Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering , 2008, 10(1): 145–167 doi: 10.1146/annurev.bioeng.10.061807.160536
18
Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens , 2009, 5(3): e1000354 doi: 10.1371/journal.ppat.1000354
19
Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology , 2005, 71(1): 247–254 doi: 10.1128/AEM.71.1.247-254.2005
20
Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology , 2000, 2(4): 450–464 doi: 10.1046/j.1462-2920.2000.00128.x
21
Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology , 2003, 50(1): 101–104 doi: 10.1046/j.1365-2958.2003.03688.x
Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science , 2012, 337(6091): 236–239 doi: 10.1126/science.1222981
24
Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America , 2005, 102(31): 11076–11081 doi: 10.1073/pnas.0504266102
25
Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology , 2006, 188(1): 305–316 doi: 10.1128/JB.188.1.305-316.2006
26
Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology , 2004, 186(9): 2724–2734 doi: 10.1128/JB.186.9.2724-2734.2004
27
Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology , 2002, 184(1): 290–301 doi: 10.1128/JB.184.1.290-301.2002
28
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology , 2001, 183(9): 2888–2896 doi: 10.1128/JB.183.9.2888-2896.2001
29
Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology . Berlin: Springer, 2013, 217–223
Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology , 1998, 30(2): 285–293 doi: 10.1046/j.1365-2958.1998.01061.x
32
Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology , 2003, 48(6): 1511–1524 doi: 10.1046/j.1365-2958.2003.03525.x
33
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science , 2002, 295(5559): 1487 doi: 10.1126/science.295.5559.1487
MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A , 2006, 78(4): 836–842 doi: 10.1002/jbm.a.30905
36
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology , 2005, 187(24): 8237–8246 doi: 10.1128/JB.187.24.8237-8246.2005
37
Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews , 2000, 24(5): 661–671 doi: 10.1111/j.1574-6976.2000.tb00565.x
38
Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology , 2008, 6(3): 199–210 doi: 10.1038/nrmicro1838
39
Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology , 2007, 5(3): 209–218 doi: 10.1038/nrmicro1616
40
O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology , 1998, 30(2): 295–304 doi: 10.1046/j.1365-2958.1998.01062.x
41
Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology , 2002, 68(4): 2008–2017 doi: 10.1128/AEM.68.4.2008-2017.2002
42
Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology , 2003, 48(4): 933–946 doi: 10.1046/j.1365-2958.2003.03490.x
43
Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters , 2002, 211(1): 105–110 doi: 10.1111/j.1574-6968.2002.tb11210.x
44
Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology , 2003, 48(1): 253–267 doi: 10.1046/j.1365-2958.2003.03432.x
45
Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications , 2010, 401(4): 521–526 doi: 10.1016/j.bbrc.2010.09.080
46
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science , 1998, 280(5361): 295–298 doi: 10.1126/science.280.5361.295
47
Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science , 2006, 313(5785): 337–341 doi: 10.1126/science.1126590
48
Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano , 2010, 4(10): 5539–5550 doi: 10.1021/nn101793u
49
Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature , 1999, 398(6724): 223–226 doi: 10.1038/18410
50
Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology , 2010, 6(1): 41–45 doi: 10.1038/nchembio.264
51
Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology , 2013, 11(5): 337–348 doi: 10.1038/nrmicro3010
52
Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials , 2006, 27(16): 3044–3063 doi: 10.1016/j.biomaterials.2005.12.024
53
Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir , 2009, 25(8): 4615–4620 doi: 10.1021/la8037318
54
Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters , 2005, 5(9): 1819–1823 doi: 10.1021/nl0507360
55
Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters , 2010, 10(9): 3717–3721 doi: 10.1021/nl102290k
56
Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics , 2011, 5(2): 024114–024117 doi: 10.1063/1.3605508
57
Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry , 2005, 77(17): 5628–5634 doi: 10.1021/ac0505977
58
Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry , 2008, 390(3): 801–808 doi: 10.1007/s00216-007-1436-3
59
Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry , 2006, 78(14): 4925–4930 doi: 10.1021/ac060541s
60
Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines , 2013, 4(4): 357–369 doi: 10.3390/mi4040357
61
Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science , 2004, 305(5690): 1622–1625 doi: 10.1126/science.1099390
62
Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition , 2009, 48(32): 5908–5911 doi: 10.1002/anie.200901550
63
Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip , 2012, 12(9): 1629–1637 doi: 10.1039/c2lc21284f
64
Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip , 2009, 9(1): 44–49 doi: 10.1039/b809670h
65
Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America , 2012, 109(20): 7665–7670 doi: 10.1073/pnas.1106752109
66
Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences , 2013, 14(5): 10570–10581 doi: 10.3390/ijms140510570
67
Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid , 2009, 7(6): 829–839 doi: 10.1007/s10404-009-0441-6
68
Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology , 2011, 6(3): 260–266 doi: 10.1021/cb100336p
69
Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials , 2003, 24(11): 1959–1967 doi: 10.1016/S0142-9612(02)00565-3
70
Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society , 2003, 125(47): 14613–14619 doi: 10.1021/ja0354566
71
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters , 2001, 86(18): 4163–4166 doi: 10.1103/PhysRevLett.86.4163
72
Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip , 2009, 9(13): 1850–1858 doi: 10.1039/b902504a
73
Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters , 2006, 88(2): 024104-1–024104-3 doi: 10.1063/1.2164911
74
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry , 2010, 82(8): 3183–3190 doi: 10.1021/ac902683t
75
Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir , 2005, 21(14): 6436–6442 doi: 10.1021/la047173c
76
Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A , 2009, 91(4): 1202–1209 doi: 10.1002/jbm.a.32312
77
Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One , 2007, 2(7): e663-1–e663-7
78
Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science , 2011, 13(2): 190–195 doi: 10.1021/co100061c
79
Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials , 2011, 32(10): 2500–2507 doi: 10.1016/j.biomaterials.2010.12.014
80
Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society , 2007, 129(7): 1904–1905 doi: 10.1021/ja068390y
81
Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio , 2010, 1(4): e00202–00210
82
Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110(46): 18380–18385 doi: 10.1073/pnas.1309729110
83
Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society , 2011, 133(15): 5966–5975 doi: 10.1021/ja111131f
84
Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip , 2009, 9(7): 925–934 doi: 10.1039/b810157d
85
Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology , 2012, 9(2): 026007–026010 doi: 10.1088/1478-3975/9/2/026007
86
Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society , 2005, 127(30): 10707–10711 doi: 10.1021/ja052211f
87
Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(46): 16104–16108 doi: 10.1073/pnas.0407204101
88
Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(26): 8850–8854 doi: 10.1073/pnas.0709571105
89
Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology , 2005, 187(2): 554–566 doi: 10.1128/JB.187.2.554-566.2005
90
Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society , 2012, 134(12): 5618–5626 doi: 10.1021/ja211593q
91
Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry , 2005, 381(3): 591–600 doi: 10.1007/s00216-004-2847-z
92
Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials , 2004, 25(7–8): 1349–1353 doi: 10.1016/j.biomaterials.2003.08.017
93
Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology , 2007, 73(13): 4300–4307 doi: 10.1128/AEM.02633-06
94
St John P M, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry , 1998, 70(6): 1108–1111 doi: 10.1021/ac9711302
95
Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical , 2000, 70(1–3): 232–242 doi: 10.1016/S0925-4005(00)00574-8
96
Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir , 2003, 19(2): 436–439 doi: 10.1021/la026365+
97
Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices , 2004, 6(3): 223–229 doi: 10.1023/B:BMMD.0000042052.47444.9a
98
Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir , 2012, 28(4): 2131–2136 doi: 10.1021/la2041967
99
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews , 2005, 105(4): 1103–1169 doi: 10.1021/cr0300789
100
Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir , 2002, 18(25): 9914–9917 doi: 10.1021/la020664h
101
Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small , 2005, 1(4): 445–451 doi: 10.1002/smll.200400072
102
Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications , 2009, 10: 1207–1209 doi: 10.1039/b822197a
103
Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir , 2013, 29(35): 11145–11153 doi: 10.1021/la402608z
104
Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry , 2009, 19(23): 3819–3831 doi: 10.1039/b818698g
105
Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science , 2012, 370(1967): 2381–2417
106
Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science , 2013, 402: 1–18 doi: 10.1016/j.jcis.2013.03.041
107
Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials , 2012, 24(27): 3697–3700 doi: 10.1002/adma.201201037
108
Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology , 2010, 26(1): 20–26 doi: 10.1016/S1005-0302(10)60003-5
109
Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films , 2005, 472(1–2): 37–43 doi: 10.1016/j.tsf.2004.06.087
110
Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir , 2009, 25(5): 3260–3263 doi: 10.1021/la8040715
111
Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir , 2007, 23(13): 7293–7298 doi: 10.1021/la070159q
112
Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science , 2009, 255(22): 9244–9247 doi: 10.1016/j.apsusc.2009.07.010
113
Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology , 2008, 22(15): 1869–1881 doi: 10.1163/156856108X320023
114
Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B , 2000, 104(37): 8836–8840 doi: 10.1021/jp0000174
115
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta , 1997, 202(1): 1–8 doi: 10.1007/s004250050096
116
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology , 2011, 2: 152–161 doi: 10.3762/bjnano.2.19
117
Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir , 2006, 22(7): 2966–2967 doi: 10.1021/la0532149
118
Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir , 2004, 20(9): 3517–3519 doi: 10.1021/la036369u
119
Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry , 2011, 21(41): 16304–16322 doi: 10.1039/c1jm12523k
120
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature , 2011, 477(7365): 443–447 doi: 10.1038/nature10447
121
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research , 2012, 42(1): 231–263 doi: 10.1146/annurev-matsci-070511-155046
122
Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances , 2013, 3(3): 671–690 doi: 10.1039/c2ra21260a
123
Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research , 2012, 42(1): 211–229 doi: 10.1146/annurev-matsci-070511-155012
124
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling , 2006, 22(5): 339–360 doi: 10.1080/08927010600980223
125
Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials , 2012, 24(5): 870–880 doi: 10.1021/cm2007044
126
Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films , 2011, 519(11): 3641–3646 doi: 10.1016/j.tsf.2011.01.347
127
Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science. , 2012, 5(6): 7491–7507 doi: 10.1039/c2ee03390a
128
Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances , 2012, 2(5): 2067–2072 doi: 10.1039/c2ra00921h
129
Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces , 2012, 4(2): 1093–1102 doi: 10.1021/am201721e
130
Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces , 2013, 5(11): 4753–4759 doi: 10.1021/am400002k
131
Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research , 2001, 58(1): 97–101 doi: 10.1002/1097-4636(2001)58:1<97::AID-JBM140>3.0.CO;2-8
132
Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology , 2008, 3(1): 41–45 doi: 10.1038/nnano.2007.386
133
Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases , 2007, 2(2): 89–94 doi: 10.1116/1.2751405
134
Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies-Correlating wettability with cell attachment. Biofouling , 2006, 22(1): 1–11 doi: 10.1080/08927010500484854
135
Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling , 2007, 23(1): 55–62 doi: 10.1080/08927010601136957
136
He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature , 2012, 487(7406): 214–218 doi: 10.1038/nature11223
137
Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials , 2010, 9(2): 101–113 doi: 10.1038/nmat2614
138
Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science , 2003, 299(5605): 371–374 doi: 10.1126/science.1078933
139
Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society , 2005, 912: 1
140
Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling , 2010, 26(1): 111–118 doi: 10.1080/08927010903383455
141
Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology , 1999, 65(4): 1603–1609
142
Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology , 1998, 20: 121–125 doi: 10.1038/sj.jim.2900490
143
Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly(N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir , 2001, 17(9): 2552–2555 doi: 10.1021/la001257d