1. Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514–8507, Japan 2. Environmental Preservation Center, Mie University, Mie 514-8507, Japan
The photocatalytic hydrogen production from aqueous methanol solution using titanium dioxide (TiO2) was investigated in the addition of metal particles including copper, lead, tin, and zinc. The results show that only the addition of copper particles enhances the hydrogen production. The copper usage and reaction temperature were further optimized for TiO2/Cu photocatalyts. Under the optimal conditions, the hydrogen production using TiO2/Cu as photocatalysts is approximately 68 times higher than that obtained with only TiO2.
. [J]. Frontiers of Chemical Science and Engineering, 2014, 8(2): 197-202.
Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
YuJ, HaiY, ChengB. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. Journal of Physical Chemistry C, 2011, 115(11): 4953-4958 doi: 10.1021/jp111562d
2
CuberioM L, FierroJ L G. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A, General, 1998, 168(2): 307-322 doi: 10.1016/S0926-860X(97)00361-X
3
AgrellJ, HasselboK, JanssonK, JarasS G, BoutonnetM. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A, General, 2001, 211(2): 239-250 doi: 10.1016/S0926-860X(00)00876-0
4
de WildP J, VerhaakM J F M. Catalytic production of hydrogen from methanol. Catalysis Today, 2000, 60(1-2): 3-10 doi: 10.1016/S0920-5861(00)00311-4
5
ShishdoT, YamamotoY, MoriokaH, TakehiraK. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A Chemical, 2007, 268(1-2): 185-194 doi: 10.1016/j.molcata.2006.12.018
6
WuG S, WangL C, LiuY M, CaoY, DaiW L, HeH Y, FanK N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts. Applied Surface Science, 2006, 253(2): 974-982 doi: 10.1016/j.apsusc.2006.01.056
7
Murcia-MascardosS, NavarroR M, Gomez-SaineroL, CostantinoU, NocchettiM, FierroJ L G. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors. Journal of Catalysis, 2001, 198(2): 338-347 doi: 10.1006/jcat.2000.3140
8
WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605 doi: 10.1016/j.ijhydene.2004.02.013
9
YangX, SalzmannC, ShiH, WangH, GreenM L H, XiaoT. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. Journal of Physical Chemistry A, 2008, 112(43): 10784-10789 doi: 10.1021/jp804305u
10
LinW C, YangW D, HuangI L, WuT S, ChungZ J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels, 2009, 23(4): 2192-2196 doi: 10.1021/ef801091p
11
YuJ, QiL, JaroniecM. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Physical Chemistry C, 2010, 114(30): 13118-13125 doi: 10.1021/jp104488b
12
NguyenV N H, AmalR, BeydounD. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science, 2003, 58(19): 4429-4439 doi: 10.1016/S0009-2509(03)00336-1
13
PanP W, ChenY W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007, 8(10): 1546-1549 doi: 10.1016/j.catcom.2007.01.006
14
KanecoS, RahmanM A, SuzukiT, KatsumataH, OhtaK. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419-424 doi: 10.1016/j.jphotochem.2004.01.012
15
LiM, LiY, PengS, LuG, LiS. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Frontiers of Chemistry in China, 2009, 4(1): 32-38 doi: 10.1007/s11458-009-0019-6
16
KorzhakA V, ErmokhinaN I, StroyukA L, BukhtiyarovV K, RaevskayaA E, LitvinV I, KuchmiyY S, IlyinV G, ManorikP A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A Chemistry, 2008, 198(2-3): 126-134 doi: 10.1016/j.jphotochem.2008.02.026
17
MaedaK, DomenK. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661 doi: 10.1021/jz1007966
18
MiwaT, KanecoS, KatsumataH, SuzukiT, OhtaK, VermaS C. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010, 35(13): 6554-6560 doi: 10.1016/j.ijhydene.2010.03.128
19
TakaiA, KamatP V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5(9): 7369-7376 doi: 10.1021/nn202294b
20
FurukawaS, TsukioD, ShishidoT, TeramuraK, TanakaT. Correlation between the oxidation state of copper and the photocatalytic activity of Cu/Nb2O5. Journal of Physical Chemistry C, 2012, 116(22): 12181-12186 doi: 10.1021/jp303625m
21
ChenT, FengZ C, WuG P, ShiJ Y, MaG J, YingP L, LiC. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. Journal of Physical Chemistry C, 2007, 111(22): 8005-8014 doi: 10.1021/jp071022b
22
SandovalM J, BellA T. Temperature-programmed desorption studies of the interactions of H2, CO, and CO2 with Cu/SiO2. Journal of Catalysis, 1993, 144(1): 227-237 doi: 10.1006/jcat.1993.1326
23
KovalenkoA, HirataF. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. Journal of Chemical Physics, 1999, 110(20): 10095-10112 doi: 10.1063/1.478883
24
ZhanpeisovN U, MiyamotoA. Interactions of water and methanol with a mixture of copper and zinc metals: A theoretical ab initio study. Research on Chemical Intermediates, 2003, 29(4): 417-428 doi: 10.1163/156856703765694354
25
BiY, LuG. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. International Journal of Hydrogen Energy, 2008, 33(9): 2225-2232 doi: 10.1016/j.ijhydene.2008.02.064
26
McBrideF, DarlingR, PussiK, HodgsonA. Tailoring the structure of water at a metal surface: A structural analysis of the water bilayer formed on an alloy template. Physical Review Letters, 2011, 106(22): 226101-226105 doi: 10.1103/PhysRevLett.106.226101
27
SreethawongT, YoshikawaS. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au loaded mesoporous TiO2 photocatalysts. Catalysis Communications, 2005, 6(10): 661-668 doi: 10.1016/j.catcom.2005.06.004
28
WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605 doi: 10.1016/j.ijhydene.2004.02.013
29
BandaraJ, UdawattaC P K, RajapakseC S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences, 2005, 4(11): 857-861 doi: 10.1039/b507816d
30
ChoiH J, KangM. Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 2007, 32(16): 3841-3848 doi: 10.1016/j.ijhydene.2007.05.011
31
LawtonT J, CarrascoJ, BaberA E, MichaelidescA, CharlesE, SykesH. Hydrogen-bonded assembly of methanol on Cu(111). Physical Chemistry Chemical Physics, 2012, 14(33): 11846-11852 doi: 10.1039/c2cp41875d
32
GuntherS, HaveckerM, Knop-GerickeA, KleimenovE, SchlogR.Adsorbate coverages and surface reactivity in methanol oxidation over Cu (110): An in situ photoelectron spectroscopy study. The Journal of Chemical Physics, 2006, 125(11): 114709 (1-10)
33
LideD R, ed. CRC Handbook of Chemistry and Physics. 85th edition. Florida: CRC Press, 2005, 4-160, 9-76, 10-169
34
MichaelsonH B. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729-4733 doi: 10.1063/1.323539