Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (3): 369-377   https://doi.org/10.1007/s11705-014-1435-9
  本期目录
Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts
Zhong HE,Xianqin WANG()
Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
 全文: PDF(1055 KB)   HTML
Abstract

Catalysts Pt/TiO2 and NiMo/Al2O3 are highly active and selective for the hydrodeoxygenation of guaiacol in a fixed bed reactor at 300 °C and 7.1 MPa, leading to the hydrogenation of aromatic ring, followed by demethylation and dehydroxylation to produce cyclohexane. For a complete hydrodeoxygenation of guaiacol, metal sites and acid sites are required. NiMo/Al2O3 and Pt/Al2O3 are more active and selective for cyclohexane formation as compared with Pt/TiO2 at 285 °C and 4 MPa. However, Pt/TiO2 is stable while the other two catalysts deactivate due to the nature and amount of coke formation during the reaction.

Key wordsPt/TiO2    NiMo/Al2O3    Pt/Al2O3    bio-oil    hydrodeoxygenation    guaiacol    cyclohexane
收稿日期: 2014-04-05      出版日期: 2014-10-11
Corresponding Author(s): Xianqin WANG   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 369-377.
Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1435-9
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I3/369
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
SamplesH/CO/CHDO degree /%
Blank run a1.270.257.4
Pt/TiO2 a2.020.0488.1
NiMo/Al2O3 a2.030.0294.3
Liquid feed (3 wt-%)1.140.29
Gasoline1~2~ 0
Diesel~2~0
Tab.1  
Fig.6  
Fig.7  
Fig.8  
1 Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, G?rtner C A, Dumesic J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900): 417–421
2 Furimsky E. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
3 Zhao C, He J, Lemonidou A A, Li X, Lercher J A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 2011, 280(1): 8–16
4 Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalyst. II. Influence of water, ammonia and hydrogen sulfide. Applied Catalysis A, General, 1994, 109(1): 97–115
5 Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Applied Catalysis A, General, 1994, 109(1): 77–96
6 Bui V N, Laurenti D, Delichère P, Geantet C. Hydrodeoxygenation of guaiacol. Applied Catalysis B: Environmental, 2011, 101(3–4): 246–255
7 Lin Y C, Li C L, Wan H P, Lee H T, Liu C F. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy & Fuels, 2011, 25(3): 890–896
8 Centeno A, Laurent E, Delmon B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. Journal of Catalysis, 1995, 154(2): 288–298
9 Gutierrez A, Kaila R K, Honkela M L, Slioor R, Krause A O I. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today, 2009, 147(3–4): 239–246
10 Jongerius A L, Jastrzebski R, Bruijnincx P C A, Weckhuysen B M. CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. Journal of Catalysis, 2012, 285(1): 315–323
11 ?enol O ?, Ryymin E M, Viljava T R, Krause A O I. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. Journal of Molecular Catalysis A Chemical, 2007, 277(1–2): 107–112
12 ?enol O ?, Viljava T R, Krause A O I. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Applied Catalysis A, General, 2007, 326(2): 236–244
13 Bridgwater A V. Catalysis in thermal biomass conversion. Applied Catalysis A, General, 1994, 116(1–2): 5–47
14 Zhao H Y, Li D, Bui P, Oyama S T. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A, General, 2011, 391(1–2): 305–310
15 González-Borja M A, Resasco D E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts. Energy & Fuels, 2011, 25(9): 4155–4162
16 Filley J, Roth C. Vanadium catalyzed guaiacol deoxygenation. Journal of Molecular Catalysis A Chemical, 1999, 139(2–3): 245–252
17 Bykova M V, Bulavchenko O A, Ermakov D Y, Lebedev M Y, Yakovlev V A, Parmon V N. Guaiacol hydrodeoxygenation in the presence of Ni-containing catalysts. Catalysis in Industry, 2011, 3(1): 15–22
18 Ghampson I T, Sepúlveda C, Garcia R, Frederick B G, Wheeler M C, Escalona N, DeSisto W J. Guaiacol transformation over unsupported molybdenum-based nitride catalysts. Applied Catalysis A, General, 2012, 413–414(31): 78–84
19 Bykova M V, Ermakov D Y, Kaichev V V, Bulavchenko O A, Saraev A A, Lebedev M Y, Yakovlev V A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study. Applied Catalysis B: Environmental, 2012, 113–114: 296–307
20 He Z, Wang X. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, 2012, 1: 28–52
21 He Z, Wang X. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid. Journal of Energy Chemistry, 2013, 22(6): 883–894
22 Miller J T, Meyers B L, Modica F S, Lane G S, Vaarkamp M, Koningsberger D C. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts. Journal of Catalysis, 1993, 143(2): 395–408
23 Lee C R, Yoon J S, Suh Y W, Choi J W, Ha J M, Suh D J, Park Y K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catalysis Communications, 2012, 17: 54–58
24 Viljava T R, Saari E R M, Krause A O I. Simultaneous hydrodesulfurization and hydrodeoxygenation: Interactions between mercapto and methoxy groups present in the same or in separate molecules. Applied Catalysis A, General, 2001, 209(1–2): 33–43
25 Viljava T R, Komulainen R S, Krause A O I. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catalysis Today, 2000, 60(1–2): 83–92
26 Hong Y K, Lee D W, Eom H J, Lee K Y. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol. Applied Catalysis B: Environmental, 2014, 150–151: 438–445
27 Hong D Y, Miller S J, Agrawal P K, Jones C W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 2010, 46(7): 1038–1040
28 Sepúlveda C, Leiva K, García R, Radovic L R, Ghampson I T, DeSisto W J, Fierro J L G, Escalona N. Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catalysis Today, 2011, 172(1): 232–239
29 Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie, 2009, 121(22): 4047–4050
30 Shin E J, Keane M A. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Industrial & Engineering Chemistry Research, 2000, 39(4): 883–892
31 Zhu X, Lobban L L, Mallinson R G, Resasco D E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis, 2011, 281(1): 21–29
32 Zhao C, Lercher J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie International Edition, 2012, 51(24): 5935–5940
33 Popov A, Kondratieva E, Goupil J M, Mariey L, Bazin P, Gilson J P, Travert A, Maugé F. Bio-oils hydrodeoxygenation: Adsorption of phenolic molecules on oxidic catalyst supports. Journal of Physical Chemistry C, 2010, 114(37): 15661–15670
34 Pestman R, Koster R M, Pieterse J A Z, Ponec V. Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. Journal of Catalysis, 1997, 168(2): 255–264
35 Thibodeau T J, Canney A S, DeSisto W J, Wheeler M C, Amar F G, Frederick B G. Composition of tungsten oxide bronzes active for hydrodeoxygenation. Applied Catalysis A, General, 2010, 388(1–2): 86–95
36 He Z, Yang M, Wang X, Zhao Z, Duan A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming. Catalysis Today, 2012, 194(1): 2–8
37 Mattos L V, Rodino E, Resasco D E, Passos F B, Noronha F B. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 catalysts. Fuel Processing Technology, 2003, 83(1–3): 147–161
38 Mortensen P M, Grunwaldt J D, Jensen P A, Knudsen K G, Jensen A D. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A, General, 2011, 407(1–2): 1–19
39 Yang J, Chen M, Ren J. Effect of Mo, W addition on performance of Ni/Al2O3 catalyst for hydrodeoxygenation. Chemical Industry and Engineering Progress, 2005, 24(12): 1386–1389
40 Bui V N, Laurenti D, Delichère P, Geantet C. Hydrodeoxygenation of guaiacol. Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Applied Catalysis B: Environmental, 2011, 101(3–4): 246–255
41 Olcese R, Bettahar M M, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Applied Catalysis B: Environmental, 2013, 129: 528–538
42 Valle B, Casta?o P, Olazar M, Bilbao J, Gayubo A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. Journal of Catalysis, 2012, 285(1): 304–314
43 Ibá?ez M, Valle B, Bilbao J, Gayubo A G, Casta?o P. Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons. Catalysis Today, 2012, 195(1): 106–113
44 Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed