Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (3): 306-311   https://doi.org/10.1007/s11705-014-1440-z
  本期目录
Kinetic study of the methanol to olefin process on a SAPO-34 catalyst
Mehdi SEDIGHI1,Kamyar KEYVANLOO2,*()
1. Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2. Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
 全文: PDF(755 KB)   HTML
Abstract

In this paper, a new kinetic model for methanol to olefin process over SAPO-34 catalyst was developed using elementary step level. The kinetic model fits well to the experimental data obtained in a fixed bed reactor. Using this kinetic model, the effect of the most important operating conditions such as temperature, pressure and methanol space-time on the product distribution has been examined. It is shown that the temperature ranges between 400 °C and 450 °C is appropriate for propene production while the medium temperature (450 °C) is favorable for total olefin yield which is equal to 33%. Increasing the reactor pressure decreases the ethylene yield, while medium pressure is favorable for the propylene yield. The result shows that the ethylene and propylene and consequently the yield of total olefins increase to approximately 35% with decreasing the molar ratio of inlet water to methanol.

Key wordsmethanol to olefin    SAPO-34    kinetic modeling    elementary step
收稿日期: 2013-12-31      出版日期: 2014-10-11
Corresponding Author(s): Kamyar KEYVANLOO   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 306-311.
Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1440-z
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I3/306
DME Formation
MeOH+H+?MeOH2+KMeOH2+=CMeOH2+CH+PMeOH
MeOH2+?R1++H2OKR1+=CR1+PH2OCMeOH2+
R1++MeOH?DMO+rDMO+=ksr,DMO+*(CR1+PMeOH-CDMO+Ksr,DMO+*)
DMO+?DME+H+KDMO+=CDMO+PDMECH+
Ethylene Formation
MeOH+H+?MeOH2+KMeOH2+
MeOH2+?R1++H2OKR1+
DME+H+?DMO+KDMO+
R1++bs?OM+H+KOM=COMCH+CR1+Cbs
OM+DMO+R2++MeOH+bsrR2+=ksr,R2+*COMCDMO+
R2+?O2+H+KR2+=CR2+PO2CH+
Propylene Formation
O2+H+?R2+KR2+
DME+H+?DMO+KDMO+
R2++DMO+R3++MeOH2+rR3+=ksr,R3+*CR2+CDMO+
R3+?O3+H+KR3+=CR3+PO3CH+
MeOH2+?MeOH+H+KMeOH2+
Butene Formation
O3+H+?R3+KR3+
DME+H+?DMO+KDMO+
R3++DMO+R4++MeOH2+rR4+=ksr,R4+CR3+CDMO+
R4+?O4+H+KR4+=CR4+PO4CH+
MeOH2+?MeOH+H+KMeOH2+
Methane Formation
MeOH+H+?MeOH2+KMeOH2+
MeOH2+?R1++H2OKR1+
R1++MeOHCH4+HCHO+H+rCH4=ksr,CH4*CR1+PMeOH
Tab.1  
EthylenePropyleneButene
R2RMSEp-valueR2RMSEp-valueR2RMSEp-value
0.912.240.0230.892.750.0170.883.150.035
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Alwahabi S M, Froment G F. Conceptual reactor design for the methanol-to-olefins process on SAPO-3. Industrial & Engineering Chemistry Research, 2004, 43(17): 5112–5122
2 Marchi A J, Froment G F. Catalytic conversion of methanol to light alkenes on SAPO molecular sieves. Applied Catalysis, 1991, 71(1): 139–152
3 Dubois D R, Obrzut D L, Liu J, Thundimadathil J, Adekkanattu P M, Guin J A, Punnoose A, Seehra M S. Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves. Fuel Processing Technology, 2003, 83(1–3): 203–218
4 Lee Y J, Baek S C, Jun K W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A, General, 2007, 329: 130–136
5 Lok B, Messina C, Patton R, Gajek R, Cannan T, Flanigen E. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 1984, 106(20): 6092–6093
6 Park T Y, Froment G F. Kinetic modeling of the methanol to olefins process. 1. Model formulation. Industrial & Engineering Chemistry Research, 2001, 40(20): 4172–4186
7 Gayubo A G, Aguayo A T, Sánchez del Campo A E, Tarrío A M, Bilbao J. Kinetic modeling of methanol transformation into olefins on a SAPO-34 Catalyst. Industrial & Engineering Chemistry Research, 2000, 39(2): 292–300
8 Iordache O M, Maria G C, Pop G L. Lumping analysis for the methanol conversion to olefins kinetic model. Industrial & Engineering Chemistry Research, 1988, 27(12): 2218–2224
9 Park T Y, Froment G F. Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation. Industrial & Engineering Chemistry Research, 2001, 40(20): 4187–4196
10 Alwahabi S A, Froment G F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Industrial & Engineering Chemistry Research, 2004, 43(17): 5098–5111
11 Gayubo A G, Aguayo A T, Alonso A, Bilbao J. Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Industrial & Engineering Chemistry Research, 2007, 46(7): 1981–1989
12 Hutchings G J, Hunter R. Hydrocarbon formation from methanol and dimethyl ether: A review of the experimental observations concerning the mechanism of formation of the primary products. Catalysis Today, 1990, 6(3): 279–306
13 Al Wahabi S M. Conversion of methanol to light olefins on SAPO-34: Kinetic modeling and reactor design. Dissertation for the Doctoral Degree. Texas: Texas A&M University, 2003
14 Wu X, Anthony R G. Effect of feed composition on methanol conversion to light olefins over SAPO-34. Applied Catalysis A, General, 2001, 218(1–2): 241–250
15 van Niekerk M J, Fletecher J C Q, O’Connor C T. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34. Applied Catalysis A, General, 1996, 138(1): 135–145
16 Wu X, Abraha M G, Anthony R G. Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor.Applied Catalysis A, General, 2004, 260(1): 63–69
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed