Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (3): 378-385   https://doi.org/10.1007/s11705-014-1441-y
  本期目录
Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)
Tahereh R. BASTAMI1,*(),Mohammad H. ENTEZARI2,Chiwai KWONG3,*(),Shizhang QIAO3,*()
1. Department of Chemical Engineering, Quchan University of Advanced Technology, Quchan 94771, Iran
2. Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91775, Iran
3. School of Chemical Engineering, The University of Adelaide, SA 5005, Australia
 全文: PDF(1149 KB)   HTML
Abstract

Two types of polymeric surfactants, PEG300 and PVP40000 , were used for the preparation of magnetic ferrite MFe2O4 (M= Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type effect on the size evolution of various nanoparticles was investigated. It was found that Fe3O4 nanoparticles exhibited higher crystalinity and size evolution than MnFe2O4 nanoparticles with use of the two surfactants. It is proposed that this observation is due to fewer tendencies of surfactants on the surface of Fe3O4 building blocks nanoparticles than MnFe2O4. Less amounts of surfactant or capping agent on the surface of nanoparticles lead to the higher crystalibity and larger size. It is also suggested that the type of spinel (normal or inverted spinel) plays a key role on the affinity of the polymeric surfactant on the surface of building blocks.

Key wordsspinel type    polymeric surfactant    size evolution    mangnetic ferrite nanoparticle
收稿日期: 2014-07-09      出版日期: 2014-10-11
Corresponding Author(s): Tahereh R. BASTAMI   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 378-385.
Tahereh R. BASTAMI,Mohammad H. ENTEZARI,Chiwai KWONG,Shizhang QIAO. Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn). Front. Chem. Sci. Eng., 2014, 8(3): 378-385.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1441-y
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I3/378
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery interaction studies with human fibroblasts in culture. Journal of Materials Science. Materials in Medicine, 2004, 15(4): 493–496
2 Hergt R, Hiergeist R, Hilger I, Kaiser W A, Lapatnikov Y, Margel S, Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2004, 270(3): 345–357
3 Johannsen M, Jordan A, Scholz R, Koch M, Lein M, Deger S, Roigas J, Jung K, Loening S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. Journal of Endourology, 2004, 18(5): 495–500
4 Liu T, Liu L, Liu J, Liu S, Qiao S Z. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8 (1): 114–122
5 Li G X, Joshi V, White R L, Wang S X, Kemp J T, Webb C, Davis R W, Sun S H. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. Journal of Applied Physics, 2003, 93(10): 7557–7559
6 Zeng H, Li J, Wang Z L, Liu J P, Sun S H. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Letters, 2004, 4(1): 187–190
7 Chaudhuri A, Mandal M, Mandal K. Preparation and study of NiFe2O4/SiO2 core–shell nanocomposites. Journal of Alloys and Compounds, 2009, 487(1–2): 698–702
8 Carta D, Casula M F, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). Journal of Physical Chemistry C, 2009, 113(20): 8606–8615
9 Sickafus K E, Wills J M, Grimes N W. Structure of spinel. Journal of the American Ceramic Society, 1999, 82(12): 3279–3292
10 Tang Z X, Sorensen C M, Klabunde K J, Hadjipanayis G C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Physical Review Letters, 1991, 67(25): 3602–3605
11 Lee J F, Huh Y M, Jun Y M, Seo J W, Jang J T, Song H T, Kim S, Cho E J H G, Yoon J S, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2006, 13(1): 95–99
12 Wang J, Wu Y, Zhu Y. Cation distribution of MnFe2O4 nanoparticles synthesized under an induced magnetic field. International Journal of Modern Physics B, 2007, 21(5): 723–729
13 Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions occurrence and uses. 2nd ed. Weinham: Willey-VCH Verlag GmbH & Co., 2003
14 Lattuada M, Hatton T A. Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007, 23(4): 2158–2168
15 Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
16 Vestal C R, Zhang Z J. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of the American Chemical Society, 2003, 125(32): 9828–9833
17 Park J Y, Daksha P, Lee G H, Woo S, Chang Y. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology, 2008, 19(36): 1–7
18 Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B, Sperling R A, Reimer R, Hohenberg H, Parak W J, F?rster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Letters, 2007, 7(8): 2422–2427
19 Palma R D, Peeters S, Van Bael M J, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chemistry of Materials, 2007, 19(7): 1821–1831
20 Cheng F Y, Su C H, Yang Y S, Yeh C S, Tsai C Y, Wu C L, Wu M T, Shieh D B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729–738
21 Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition, 2005, 44(18): 2782–2785
22 Cullity B D. Elements of X-ray diffraction. Massachusetts: Addison Wesley, 1978
23 Rohani Bastami T, Entezari M H, Hu Q H, Hartono S B, Qiao S Z. Chemical Engineering Journal, 2012, 210: 157–165
24 Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C. Oriented attachment kinetics for ligand capped nanocrystals: Coarsening of thiol-PbS nanoparticle. Journal of Physical Chemistry B, 2007, 111(6): 1449–1454
25 Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N, Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids. Langmuir, 2001, 17(25): 7907–7911
26 Swami A, Kumar A, Sastry M. Formation of water-dispersible gold nanoparticles using a technique based on surface-bound interdigitated bilayers. Langmuir, 2003, 19(4): 1168–1172
27 Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
28 Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A. Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles. Langmuir, 1999, 15(21): 7111–7115
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed