Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (3): 280-294   https://doi.org/10.1007/s11705-015-1524-4
  本期目录
Metal-free, carbon-based catalysts for oxygen reduction reactions
Zhiyi Wu1,Zafar Iqbal2,Xianqin Wang3,*()
1. Department of Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
2. Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
3. Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
 全文: PDF(988 KB)   HTML
Abstract

Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C−M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N−N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorporation of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts.

Key wordsoxygen reduction reaction    electrocatalysis    metal-free    carbon-based    polynitrogen
收稿日期: 2015-04-16      出版日期: 2015-09-30
Corresponding Author(s): Xianqin Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(3): 280-294.
Zhiyi Wu,Zafar Iqbal,Xianqin Wang. Metal-free, carbon-based catalysts for oxygen reduction reactions. Front. Chem. Sci. Eng., 2015, 9(3): 280-294.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1524-4
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I3/280
Fig.1  
Material Synthesis method/precursors Nitrogen content/at% Onset potential relative to Pt/Ca) Current density vs. Pt/C Ref.
N-graphene CVD/ NH3, CH4, H2 4.0 −0.2 V in 0.1 mol/L KOH Higher [25]
N-graphene Solution processing/4-aminobenzoic acid, graphite 1.7 −0.1 V in 0.1 mol/L KOH Higher [26]
N-carbon nanocages Thermal annealing/pyridine 4.5?10 0.1 V in 0.1 mol/L KOH Higher [27]
N-CNT cups CVD/ MeCN, EtOH, ferrocene 2?7 −0.15 V in 0.1 mol/L KOH Lower [28]
N-CNT fiber CVD/C2H4(NH2)2 4.7?5.8 −0.1 V in 0.1 mol/L KOH Higher [29]
N-mesoporous carbon Thermal annealing/1-ethyl-3-methylimidazolium dicyanamide, purine or pyrimidine 12 −0.05 V in 0.1 mol/L KOH Higher [30]
N-mesoporous carbon Thermal annealing/NH3, mesoporous carbon 4?6 −0.15 V in 0.05 mol/L H2SO4 Lower [31]
N-graphitic arrays Pyrolysis/PDI 2.7?3.5 −0.02 V in 0.1 mol/L KO Higher [32]
N-graphene Solvothermal/Li3N, cyanuric chloride, CCl4 10.5?16.4 −0.1 V in 1.0 mol/L NaOH Higher [33]
N-carbon nanocapsules Pyrolysis/Gd (III) diethylenetriaminepentaacetate 3.2?7.1 −0.1 V in 0.1 mol/L KOH Higher [34]
N-graphene Pyrolysis/glucose, melamine or urea 9.2?33.7 −0.05 V in 0.1 mol/L KOH Lower [35]
N-graphene Ball milling/graphite, N2 14.8 −0.15 V in 0.1 mol/L KOH Higher [36]
N-graphene Pyrolysis/graphene oxide, melamine or urea or DCDA 3?5 −0.1 V in 0.1 mol/L KOH Higher [37]
N-graphene Thermal annealing/graphene oxide, polydopamine 2.8?3.8 −0.07 V in 0.1 mol/L KOH Lower [38]
N-hollow mesoporous carbon spheres Thermal annealing/glycine 3.0?3.8 −0.05 V in 0.1 mol/L KOH Higher [39]
N-mesoporous carbon Thermal annealing/mesoporous carbon, honey 0.31?1.13 −0.1 V in 0.1 mol/L KOH Lower [40]
N-carbon nanosheet /graphene Thermal annealing/graphite oxide, polyaniline 5.74 +0.15 V in 0.05 mol/L phosphate buffer solution Higher [41]
N-graphene CVD/H2, C2H4, NH3 up to 16 −0.2 V in 0.1 mol/L KOH Lower [42]
N-CNT Thermal annealing/HNO3 oxidized CNT, NH3 2.9?6 +0.06 V in 0.1 mol/L KOH Higher [43]
N-carbon spheres Spray pyrolysis/xylene, ethylenediamine 2.1?6.2 0 V in 0.1 mol/L KOH Higher [44]
N-graphene Thermal annealing/graphite oxide, melamine 6.6?10.1 −0.1 V (vs. bulk Pt electrode) in 0.1 mol/L KOH Higher (vs. bulk Pt electrode) [45]
N-graphene Pyrolysis/GO, Cu(NH3)42+ 2.45?2.85 −0.1 V in 0.1 mol/L KOH Lower [46]
N-rGO-CNT Solution processing/thermal annealing/CNT, GO, melamine 5.02 −0.1 V in 0.1 mol/L KOH Lower [47]
N-carbon Thermal annealing/dopamine, FeCl3 0.97?2.43 −0.1 V in 0.1 mol/L KOH Lower [48]
N-activated carbon Thermal annealing/cyanamide, activated carbon 5.56?8.65 −0.12 V in 0.1 mol/L KOH Higher [49]
N-carbon sheets Pyrolysis/gelatin, ketjenblack 1.19?1.79 ~0 V in 0.1 mol/L KOH Higher [50]
N-hollow mesoporous carbon spheres Thermal annealing/glycine 3.81 −0.06 V in 0.1 mol/L KOH Higher [51]
N-graphene/CNT Pyrolysis/GO, MWCNT, urea 4?6 ~0 V in 0.1 mol/L KOH Higher [52]
N-amorphous carbon Magnetron sputtering/carbon,N2,CH4 3.58?14.95 −0.03 V in 0.1 mol/L KOH Lower [53]
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Jaouen  F, Proietti  E, Lefèvre  M, Chenitz  R, Dodelet  J P, Wu  G, Chung  H T, Johnston  C M, Zelenay  P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science, 2011, 4(1): 114–130
2 Gasteiger  H A, Kocha  S S, Sompalli  B, Wagner  F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56(1–2): 9–35
3 Yu  X, Ye  S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources, 2007, 172(1): 145–154
4 Videla  A H A M, Zhang  L, Kim  J, Zeng  J, Francia  C, Zhang  J, Specchia  S. Mesoporous carbons supported non-noble metal Fe–N X electrocatalysts for PEM fuel cell oxygen reduction reaction. Journal of Applied Electrochemistry, 2013, 43(2): 159–169
5 Lefèvre  M, Proietti  E, Jaouen  F, Dodelet  J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324(5923): 71–74
6 Wu  G, More  K L, Johnston  C M, Zelenay  P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332(6028): 443–447
7 Matter  P H, Wang  E, Arias  M, Biddinger  E J, Ozkan  U S. Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. Journal of Molecular Catalysis A Chemical, 2007, 264(1–2): 73–81
8 Tan  Y, Xu  C, Chen  G, Fang  X, Zheng  N, Xie  Q. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Advanced Functional Materials, 2012, 22(21): 4584–4591
9 Vante  N A, Jaegermann  W, Tributsch  H, Hoenle  W, Yvon  K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. Journal of the American Chemical Society, 1987, 109(11): 3251–3257
10 Vante  N A, Tributsch  H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 1986, 323(6087): 431–432
11 Lewera  A, Inukai  J, Zhou  W P, Cao  D, Duong  H T, Alonso-Vante  N, Wieckowski  A A, Lewera  J I. Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochimica Acta, 2007, 52(18): 5759–5765
12 Jasinski  R. A new fuel cell cathode catalyst. Nature, 1964, 201(4925): 1212–1213
13 Kadish  K M, Frémond  L, Ou  Z, Shao  J, Shi  C, Anson  F C, Burdet  F, Gros  C P, Barbe  J M, Guilard  R. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: Reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. Journal of the American Chemical Society, 2005, 127(15): 5625–5631
14 Baranton  S, Coutanceau  C, Garnier  E, Léger  J M. How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? Journal of Electroanalytical Chemistry, 2006, 590(1): 100–110
15 Rita Sulub  W M M. Study of the catalytic activity for oxygen reduction of polythiophene modified with cobalt or nickel. International Journal of Electrochemical Science, 2009, 4: 1015–1027
16 Bashyam  R, Zelenay  P. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, 443(7107): 63–66
17 Millán  W M, Smit  M A. Study of electrocatalysts for oxygen reduction based on electroconducting polymer and nickel. Journal of Applied Polymer Science, 2009, 112(5): 2959–2967
18 Deng  C Z, Dignam  M J. Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts I. Physical and electrochemical characterization. Journal of the Electrochemical Society, 1998, 145(10): 3507–3512
19 Yang  R, Stevens  K, Dahn  J R. Investigation of activity of sputtered transition-metal (TM)–C–N (TM= V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction. Journal of the Electrochemical Society, 2008, 155(1): B79–B91
20 Ishihara  A, Shibata  Y, Mitsushima  S, Ota  K. Partially oxidized tantalum carbonitrides as a new nonplatinum cathode for PEFC-1. Journal of the Electrochemical Society, 2008, 155(4): B400–B406
21 Gong  K, Du  F, Xia  Z, Durstock  M, Dai  L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323(5915): 760–764
22 Wang  S, Yu  D, Dai  L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. Journal of the American Chemical Society, 2011, 133(14): 5182–5185
23 Wang  S, Yu  D, Dai  L, Chang  D W, Baek  J B. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano, 2011, 5(8): 6202–6209
24 Yu  D, Zhang  Q, Dai  L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society, 2010, 132(43): 15127–15129
25 Qu  L, Liu  Y, Baek  J B, Dai  L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326
26 Jeon  I Y, Yu  D, Bae  S Y, Choi  H J, Chang  D W, Dai  L, Baek  J B. Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chemistry of Materials, 2011, 23(17): 3987–3992
27 Chen  S, Bi  J, Zhao  Y, Yang  L, Zhang  C, Ma  Y, Wu  Q, Wang  X, Hu  Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Advanced Materials, 2012, 24(41): 5593–5597
28 Tang  Y, Allen  B L, Kauffman  D R, Star  A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. Journal of the American Chemical Society, 2009, 131(37): 13200–13201
29 Chen  T, Cai  Z, Yang  Z, Li  L, Sun  X, Huang  T, Yu  A, Kia  H G, Peng  H. Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes. Advanced Materials, 2011, 23(40): 4620–4625
30 Yang  W, Fellinger  T P, Antonietti  M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. Journal of the American Chemical Society, 2011, 133(2): 206–209
31 Wang  X, Lee  J S, Zhu  Q, Liu  J, Wang  Y, Dai  S. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chemistry of Materials, 2010, 22(7): 2178–2180
32 Liu  R, Wu  D, Feng  X, Müllen  K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie International Edition, 2010, 49(14): 2565–2569
33 Deng  D, Pan  X, Yu  L, Cui  Y, Jiang  Y, Qi  J, Li  W X, Fu  Q, Ma  X, Xue  Q, Sun  G, Bao  X. Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials, 2011, 23(5): 1188–1193
34 Shanmugam  S, Osaka  T. Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chemical Communications, 2011, 47(15): 4463–4465
35 Zhang  Y, Ge  J, Wang  L, Wang  D, Ding  F, Tao  X, Chen  W. Manageable N-doped graphene for high performance oxygen reduction reaction. Scientific Reports, 2013, 3: 2771
36 3.Jeon  I Y, Choi  H J, Ju  M J, Choi  I T, Lim  K, Ko  J, Kim  H K, Kim  J C, Lee  J J, Shin  D, Jung  S M, Seo  J M, Kim  M J, Park  N, Dai  L, Baek  J B. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3: 2260
37 Vikkisk  M, Kruusenberg  I, Joost  U, Shulga  E, Kink  I, Tammeveski  K. Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Applied Catalysis B: Environmental, 2014, 147: 369–376
38 Cong  H P, Wang  P, Gong  M, Yu  S H. Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol—tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy, 2014, 3: 55–63
39 Yan  J, Meng  H, Xie  F, Yuan  X, Yu  W, Lin  W, Ouyang  W, Yuan  D. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 245: 772–778
40 Lu  J, Bo  X, Wang  H, Guo  L. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochimica Acta, 2013, 108: 10–16
41 Wen  Q, Wang  S, Yan  J, Cong  L, Chen  Y, Xi  H. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry, 2014, 95: 23–28
42 Luo  Z, Lim  S, Tian  Z, Shang  J, Lai  L, MacDonald  B, Fu  C, Shen  Z, Yu  T, Lin  J. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 2011, 21(22): 8038–8044
43 Nagaiah  T C, Kundu  S, Bron  M, Muhler  M, Schuhmann  W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2010, 12(3): 338–341
44 Zhou  X, Yang  Z, Nie  H, Yao  Z, Zhang  L, Huang  S. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium. Journal of Power Sources, 2011, 196(23): 9970–9974
45 Sheng  Z H, Shao  L, Chen  J J, Bao  W J, Wang  F B, Xia  X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358
46 Bo  X, Han  C, Zhang  Y, Guo  L. Confined nanospace synthesis of less aggregated and porous nitrogen-doped graphene as metal-free electrocatalysts for oxygen reduction reaction in alkaline solution. ACS Applied Materials & Interfaces, 2014, 6(4): 3023–3030
47 Zhang  Y, Jiang  W J, Zhang  X, Guo  L, Hu  J S, Wei  Z, Wan  L J. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16(27): 13605–13609
48 Liu  X, Zhu  H, Yang  X. One-step synthesis of dopamine-derived micro/mesoporous nitrogen-doped carbon materials for highly efficient oxygen-reduction catalysts. Journal of Power Sources, 2014, 262: 414–420
49 Zhang  B, Wen  Z, Ci  S, Mao  S, Chen  J, He  Z. Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Applied Materials & Interfaces, 2014, 6(10): 7464–7470
50 Nam  G, Park  J, Kim  S T, Shin  D, Park  N, Kim  Y, Lee  J S, Cho  J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 2014, 14(4): 1870–1876
51 Yan  J, Meng  H, Xie  F, Yuan  X, Yu  W, Lin  W, Ouyang  W, Yuan  D. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 245: 772–778
52 Ratso  S, Kruusenberg  I, Vikkisk  M, Joost  U, Shulga  E, Kink  I, Kallio  T, Tammeveski  K. Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 2014, 73: 361–370
53 Chen  J, Wang  X, Cui  X, Yang  G, Zheng  W. One-step synthesis of N-doped amorphous carbon at relatively low temperature as excellent metal-free electrocatalyst for oxygen reduction. Catalysis Communications, 2014, 46: 161–164
54 Ouyang  W, Zeng  D, Yu  X, Xie  F, Zhang  W, Chen  J, Yan  J, Xie  F, Wang  L, Meng  H, Yuan  D. Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39(28): 15996–16005
55 Lyth  S M, Nabae  Y, Moriya  S, Kuroki  S, Kakimoto  M, Ozaki  J, Miyata  S. Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. Journal of Physical Chemistry C, 2009, 113(47): 20148–20151
56 Kwon  K, Sa  Y J, Cheon  J Y, Joo  S H. Ordered mesoporous carbon nitrides with graphitic frameworks as metal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium. Langmuir, 2012, 28(1): 991–996
57 Zheng  Y, Jiao  Y, Chen  J, Liu  J, Liang  J, Du  A, Zhang  W, Zhu  Z, Smith  S C, Jaroniec  M, Lu  G Q, Qiao  S Z. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. Journal of the American Chemical Society, 2011, 133(50): 20116–20119
58 Liang  J, Zheng  Y, Chen  J, Liu  J, Hulicova-Jurcakova  D, Jaroniec  M, Qiao  S Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angewandte Chemie International Edition, 2012, 51(16): 3892–3896
59 Yang  S, Feng  X, Wang  X, Müllen  K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angewandte Chemie International Edition, 2011, 50(23): 5339–5343
60 Sun  Y, Li  C, Xu  Y, Bai  H, Yao  Z, Shi  G. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications, 2010, 46(26): 4740–4742
61 Wang  H, Maiyalagan  T, Wang  X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794
62 Liu  R, Wu  D, Feng  X, Müllen  K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie International Edition, 2010, 49(14): 2565–2569
63 Kim  H, Lee  K, Woo  S I, Jung  Y. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Physical Chemistry Chemical Physics, 2011, 13(39): 17505–17510
64 Geng  D, Chen  Y, Chen  Y, Li  Y, Li  R, Sun  X, Ye  S, Knights  S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy & Environmental Science, 2011, 4(3): 760–764
65 Niwa  H, Horiba  K, Harada  Y, Oshima  M, Ikeda  T, Terakura  K, Ozaki  J, Miyata  S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2009, 187(1): 93–97
66 Nagaiah  T C, Kundu  S, Bron  M, Muhler  M, Schuhmann  W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2010, 12(3): 338–341
67 Lai  L, Potts  J R, Zhan  D, Wang  L, Poh  C K, Tang  C, Gong  H, Shen  Z, Lin  J, Ruoff  R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942
68 Yu  D, Zhang  Q, Dai  L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society, 2010, 132(43): 15127–15129
69 Wiggins-Camacho  J D, Stevenson  K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(40): 20002–20010
70 Liu  G, Li  X, Ganesan  P, Popov  B N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta, 2010, 55(8): 2853–2858
71 Kundu  S, Nagaiah  T C, Xia  W, Wang  Y, Dommele  S V, Bitter  J H, Santa  M, Grundmeier  G, Bron  M, Schuhmann  W, Muhler  M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. Journal of Physical Chemistry C, 2009, 113(32): 14302–14310
72 Olson  T S, Pylypenko  S, Atanassov  P, Asazawa  K, Yamada  K, Tanaka  H. Anion-exchange membrane fuel cells: Dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. Journal of Physical Chemistry C, 2010, 114(11): 5049–5059
73 Higgins  D, Chen  Z, Chen  Z. Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. Electrochimica Acta, 2011, 56(3): 1570–1575
74 Rao  C V, Cabrera  C R, Ishikawa  Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. Journal of Physical Chemistry Letters, 2010, 1(18): 2622–2627
75 Luo  Z, Lim  S, Tian  Z, Shang  J, Lai  L, MacDonald  B, Fu  C, Shen  Z, Yu  T, Lin  J. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 2011, 21(22): 8038–8044
76 Matter  P H, Zhang  L, Ozkan  U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96
77 Yang  Z, Nie  H, Chen  X, Chen  X, Huang  S. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. Journal of Power Sources, 2013, 236: 238–249
78 Zhao  A, Masa  J, Schuhmann  W, Xia  W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. Journal of Physical Chemistry C, 2013, 117(46): 24283–24291
79 Ma  Y, Zhang  L, Li  J, Ni  H, Li  M, Zhang  J, Feng  X, Fan  Q, Hu  Z, Huang  W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chinese Science Bulletin, 2011, 56(33): 3583–3589
80 Artyushkova  K, Pylypenko  S, Olson  T S, Fulghum  J E, Atanassov  P. Predictive modeling of electrocatalyst structure based on structure-to-property correlations of X-ray photoelectron spectroscopic and electrochemical measurements. Langmuir, 2008, 24(16): 9082–9088
81 Wiggins-Camacho  J D, Stevenson  K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(40): 20002–20010
82 Pels  J R, Kapteijn  F, Moulijn  J A, Zhu  Q, Thomas  K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653
83 Silva  R, Voiry  D, Chhowalla  M, Asefa  T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. Journal of the American Chemical Society, 2013, 135(21): 7823–7826
84 Li  M, Zhang  L, Xu  Q, Niu  J, Xia  Z. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis, 2014, 314: 66–72
85 Gao  F, Zhao  G L, Yang  S. Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catalysis, 2014, 4(5): 1267–1273
86 Li  Q, Noffke  B W, Wang  Y, Menezes  B, Peters  D G, Raghavachari  K, Li  L. Electrocatalytic oxygen activation by carbanion intermediates of nitrogen-doped graphitic carbon. Journal of the American Chemical Society, 2014, 136(9): 3358–3361
87 Yang  L, Jiang  S, Zhao  Y, Zhu  L, Chen  S, Wang  X, Wu  Q, Ma  J, Ma  Y, Hu  Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2011, 50(31): 7132–7135
88 Sheng  Z H, Gao  H L, Bao  W J, Wang  F B, Xia  X H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012, 22(2): 390–395
89 Jo  G, Shanmugam  S. Single-step synthetic approach for boron-doped carbons as a non-precious catalyst for oxygen reduction in alkaline medium. Electrochemistry Communications, 2012, 25: 101–104
https://doi.org/10.1016/j.elecom.2012.09.025
90 Yang  L, Zhao  Y, Chen  S, Wu  Q, Wang  X, Hu  Z. A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chinese Journal of Catalysis, 2013, 34(11): 1986–1991
91 Liu  Z W, Peng  F, Wang  H J, Yu  H, Zheng  W X, Yang  J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angewandte Chemie International Edition, 2011, 50(14): 3257–3261
92 Liu  Z, Peng  F, Wang  H, Yu  H, Tan  J, Zhu  L. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications, 2011, 16(1): 35–38
93 Zhang  C, Mahmood  N, Yin  H, Liu  F, Hou  Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced Materials, 2013, 25(35): 4932–4937
94 Yang  D S, Bhattacharjya  D, Inamdar  S, Park  J, Yu  J S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Journal of the American Chemical Society, 2012, 134(39): 16127–16130
95 Yang  Z, Yao  Z, Li  G, Fang  G, Nie  H, Liu  Z, Zhou  X, Chen  X, Huang  S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano, 2012, 6(1): 205–211
96 Jin  Z, Nie  H, Yang  Z, Zhang  J, Liu  Z, Xu  X, Huang  S. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale, 2012, 4(20): 6455–6460
97 Zhang  L, Niu  J, Dai  L, Xia  Z. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir, 2012, 28(19): 7542–7550
98 Zhang  L, Xia  Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. Journal of Physical Chemistry C, 2011, 115(22): 11170–11176
99 Zhang  Y, Ge  J, Wang  L, Wang  D, Ding  F, Tao  X, Chen  W. Manageable N-doped graphene for high performance oxygen reduction reaction. Scientific Reports, 2013, 3: 2771
100 Choi  C H, Park  S H, Woo  S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chemistry, 2011, 13(2): 406–412
101 Ji  L, Rao  M, Zheng  H, Zhang  L, Li  Y, Duan  W, Guo  J, Cairns  E J, Zhang  Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 2011, 133(46): 18522–18525
102 Yao  Z, Nie  H, Yang  Z, Zhou  X, Liu  Z, Huang  S. Catalyst-free synthesis of iodine-doped grapheme via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 2012, 48(7): 1027–1029
103 Jeon  I Y, Choi  H J, Choi  M, Seo  J M, Jung  S M, Kim  M J, Zhang  S, Zhang  L, Xia  Z, Dai  L, Park  N, Baek  J B. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3: 1830
104 Sun  X, Zhang  Y, Song  P, Pan  J, Zhuang  L, Xu  W, Xing  W. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catalysis, 2013, 3(8): 1726–1729
105 Ozaki  J, Kimura  N, Anahara  T, Oya  A. Preparation and oxygen reduction activity of BN-doped carbons. Carbon, 2007, 45(9): 1847–1853
106 Wang  S, Iyyamperumal  E, Roy  A, Xue  Y, Yu  D, Dai  L. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen. Angewandte Chemie International Edition, 2011, 50(49): 11756–11760
107 Wang  S, Zhang  L, Xia  Z, Roy  A, Chang  D W, Baek  J B, Dai  L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition, 2012, 51(17): 4209–4212
108 Zheng  Y, Jiao  Y, Ge  L, Jaroniec  M, Qiao  S Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angewandte Chemie International Edition, 2013, 52(11): 3110–3116
109 Zhao  Y, Yang  L, Chen  S, Wang  X, Ma  Y, Wu  Q, Jiang  Y, Qian  W, Hu  Z. Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes? Journal of the American Chemical Society, 2013, 135(4): 1201–1204
110 Jin  J, Pan  F, Jiang  L, Fu  X, Liang  A, Wei  Z, Zhang  J, Sun  G. Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano, 2014, 8(4): 3313–3321
111 Yu  D, Xue  Y, Dai  L. Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. Journal of Physical Chemistry Letters, 2012, 3(19): 2863–2870
112 Nasini  U B, Gopal Bairi  V, Kumar Ramasahayam  S, Bourdo  S E, Viswanathan  T, Shaikh  A U. Oxygen reduction reaction studies of phosphorus and nitrogen Co-doped mesoporous carbon synthesized via microwave technique. ChemElectroChem, 2014, 1(3): 573–579
113 Choi  C H, Park  S H, Woo  S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon. Journal of Materials Chemistry, 2012, 22(24): 12107–12115
114 Jiang  H, Zhu  Y, Feng  Q, Su  Y, Yang  X, Li  C. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions. Chemistry, 2014, 20(11): 3106–3112
115 Liang  J, Jiao  Y, Jaroniec  M, Qiao  S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
116 Liu  Z, Nie  H, Yang  Z, Zhang  J, Jin  Z, Lu  Y, Xiao  Z, Huang  S. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 2013, 5(8): 3283–3288
117 Wohlgemuth  S A, White  R J, Willinger  M G, Titirici  M M, Antonietti  M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chemistry, 2012, 14(5): 1515–1523
118 Su  Y, Zhang  Y, Zhuang  X, Li  S, Wu  D, Zhang  F, Feng  X. Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013, 62: 296–301
119 Choi  C H, Chung  M W, Park  S H, Woo  S I. Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media. Physical Chemistry Chemical Physics, 2013, 15(6): 1802–1805
120 Xu  P, Wu  D, Wan  L, Hu  P, Liu  R. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction. Journal of Colloid and Interface Science, 2014, 421: 160–164
121 Cui  Z, Wang  S, Zhang  Y, Cao  M. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. Journal of Power Sources, 2014, 259: 138–144
122 You  C, Liao  S, Li  H, Hou  S, Peng  H, Zeng  X, Liu  F, Zheng  R, Fu  Z, Li  Y. Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon, 2014, 69: 294–301
123 Wang  J, Xu  Z, Gong  Y, Han  C, Li  H, Wang  Y. One-step production of sulfur and nitrogen Co-doped graphitic carbon for oxygen reduction: Activation effect of oxidized sulfur and nitrogen. ChemCatChem, 2014, 6(5): 1204–1209
124 Ramasahayam  S K, Nasini  U B, Bairi  V, Shaikh  A U, Viswanathan  T. Microwave assisted synthesis and characterization of silicon and phosphorous co-doped carbon as an electrocatalyst for oxygen reduction reaction. RSC Advances, 2014, 4(12): 6306–6313
125 Sun  X, Song  P, Zhang  Y, Liu  C, Xu  W, Xing  W. A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Scientific Reports, 2013, 3: 2505
126 Choi  C H, Park  S H, Woo  S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano, 2012, 6(8): 7084–7091
127 Zhang  L, Niu  J, Dai  L, Xia  Z. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir, 2012, 28(19): 7542–7550
128 Li  Q, Zhang  S, Dai  L, Li  L. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134(46): 18932–18935
129 Wu  Z, Benchafia  E M, Iqbal  Z, Wang  X. N8—polynitrogen stabilized on multi-wall carbon nanotubes for oxygen-reduction reactions at ambient conditions. Angewandte Chemie International Edition, 2014, 53(46): 12555–12559
130 Abou-Rachid  H, Hu  A, Timoshevskii  V, Song  Y, Lussier  L S. Nanoscale high energetic materials: A polymeric nitrogen chain N8 confined inside a carbon nanotube. Physical Review Letters, 2008, 100(19): 196401
131 Hirshberg  B, Gerber  R B, Krylov  A I. Calculations predict a stable molecular crystal of N8. Nature Chemistry, 2013, 6(1): 52–56
https://doi.org/10.1038/nchem.1818
132 Rodney  J Bartlett  S F. Structure and stability of polynitrogen molecules and their spectroscopic Characteristics. 2001
133 Zhang  P, Xiao  B B, Hou  X L, Zhu  Y F, Jiang  Q. Layered SiC sheets: A potential catalyst for oxygen reduction reaction. Scientific Reports, 2014, 4: 3821
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed