Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (4): 461-466   https://doi.org/10.1007/s11705-015-1543-1
  本期目录
Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts
Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han()
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(296 KB)   HTML
Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

Key wordshexitols    cellulose    hydrogenation    sulfated zirconia    ruthenium
收稿日期: 2015-07-05      出版日期: 2015-11-26
Corresponding Author(s): Jinyu Han   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 461-466.
Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1543-1
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I4/461
Fig.1  
Catalyst BET surface area /(m2·g−1) Pore volume /(cm3·g−1) Pore size /nm [B]/[L]a)
Ru/SZ-773 84.9 0.097 4.6 1.1
Ru/SZSi(100:15)-773 113.5 0.14 5.0 1.5
Ru/SZSi(100:100)-773 151.2 0.28 7.4 2.2
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Entry Catalyst Conversion /% Yield /%
Hexitols Xylitol C2-C3 Othersb)
1 Ru/Z-773 39.9 0.57 0.94 0.97 37.5
2 Ru/SZ-773 71.8 57.9 9.1 0.25 4.6
3 Ru/SZ-873 25.8 20.3 2.7 0.3 2.5
4 Ru/SZ-973 14.3 4.9 1.8 0.26 7.3
5 Ru/SZSi(100:15)-773 71.0 58.1 5.6 0.87 6.5
6 Ru/SZSi(100:100)-773 87.4 33.7 11.3 6.4 36.0
Tab.2  
Fig.5  
1 Dhepe  P L, Fukuoka  A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1(12): 969–975
https://doi.org/10.1002/cssc.200800129
2 Yang  P F, Kobayashi  H, Fukuoka  A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 2011, 32(5): 716–722
https://doi.org/10.1016/S1872-2067(10)60232-X
3 Van de Vyver  S, Geboers  J, Jacobs  P A, Sels  B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1): 82–94
https://doi.org/10.1002/cctc.201000302
4 Luo  C, Wang  S, Liu  H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 2007, 119(46): 7780–7783
https://doi.org/10.1002/ange.200702661
5 Ji  N, Zhang  T, Zheng  M Y, Wang  A Q, Wang  H, Wang  X D, Chen  J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition, 2008, 47(44): 8510–8513
https://doi.org/10.1002/anie.200803233
6 Palkovits  R, Tajvidi  K, Procelewska  J, Rinaldi  R, Ruppert  A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry, 2010, 12(6): 972–978
https://doi.org/10.1039/c000075b
7 Geboers  J, Van de Vyver  S, Carpentier  K, Jacobs  P, Sels  B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47(19): 5590–5592
https://doi.org/10.1039/c1cc10422e
8 Rinaldi  R, Palkovits  R, Schuth  F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition, 2008, 47(42): 8047–8050
https://doi.org/10.1002/anie.200802879
9 Li  C Z, Zhao  Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis, 2007, 349(11-12): 1847–1850
https://doi.org/10.1002/adsc.200700259
10 Ignatyev  I A, Doorslaer  C V, Mertens  P G, Binnemans  K, Vos  D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem, 2010, 3(1): 91–96
https://doi.org/10.1002/cssc.200900213
11 Onda  A, Ochi  T, Yanagisawa  K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10(10): 1033–1037
https://doi.org/10.1039/b808471h
12 Chambon  F, Rataboul  F, Pinel  C, Cabiac  A, Guillon  E, Essayem  N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105(1-2): 171–181
https://doi.org/10.1016/j.apcatb.2011.04.009
13 Pang  J F, Wang  A Q, Zheng  M Y, Zhang  T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37): 6935–6937
https://doi.org/10.1039/c0cc02014a
14 Cabiac  A, Guillon  E, Chambon  F, Pinel  C, Rataboul  F, Essayem  N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A, 2011, 402(1-2): 1–10
https://doi.org/10.1016/j.apcata.2011.05.029
15 Kobayashi  H, Ito  Y, Komaanoya  T, Hosaka  Y, Dhepe  P L, Kasai  K, Hara  K, Fukuoka  A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13(2): 326–333
https://doi.org/10.1039/C0GC00666A
16 Fukuoka  A, Dhepe  P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition, 2006, 45(31): 5161–5163
https://doi.org/10.1002/anie.200601921
17 Deng  W P, Tan  X S, Fang  W H, Zhang  Q H, Wang  Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters, 2009, 133(1-2): 167–174
https://doi.org/10.1007/s10562-009-0136-3
18 Han  J W, Lee  H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19: 115–118
https://doi.org/10.1016/j.catcom.2011.12.032
19 Cutrufello  M G, Diebold  U, Gonzalez  R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters, 2005, 101(1-2): 5–13
https://doi.org/10.1007/s10562-005-3740-x
20 Li  X B, Nagaoka  K, Simon  L J, Olindo  R, Lercher  J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113(1-2): 34–40
https://doi.org/10.1007/s10562-006-9005-5
21 Zhao  E, Isaev  Y, Sklyarov  A, Fripiat  J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters, 1999, 60(4): 173–181
https://doi.org/10.1023/A:1019027628585
22 Barthos  R, Lonyi  F, Engelhardt  J, Valyon  J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis, 2000, 10(1-2): 79–87
https://doi.org/10.1023/A:1019112017065
23 Chen  X R, Ju  Y H, Mou  C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C, 2007, 111(50): 18731–18737
https://doi.org/10.1021/jp0749221
24 Oh  J, Dash  S, Lee  H. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13(8): 2004–2007
https://doi.org/10.1039/c1gc15263g
25 Wang  Y, Ma  J H, Liang  D, Zhou  M M, Li  F X, Li  R F. Lewis and Brønsted acids in super-acid catalyst SO42−/ZrO2-SiO2. Journal of Materials Science, 2009, 44(24): 6736–6740
https://doi.org/10.1007/s10853-009-3603-8
26 Hammache  S, Goodwin  J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis, 2003, 218(2): 258–266
https://doi.org/10.1016/S0021-9517(03)00067-8
27 Li  X B, Nagaoka  K, Lercher  J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
https://doi.org/10.1016/j.jcat.2004.07.003
28 Deutschmann  O, Knözinger  H, Kochloefl  K, Turek  T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry  , Wiley, 2009, 38–39
29 Li  X B, Nagaoka  K, Lercher  J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
https://doi.org/10.1016/j.jcat.2004.07.003
30 Suwannakarn  K, Lotero  E, Goodwin  J G Jr, Lu  C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 2008, 255(2): 279–286
https://doi.org/10.1016/j.jcat.2008.02.014
31 Thitsartarn  W, Kawi  S. Transesterification of oil by sulfated Zr-supported mesoporous silica. Industrial & Engineering Chemistry Research, 2011, 50(13): 7857–7865
https://doi.org/10.1021/ie1022817
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed