Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (4): 501-510   https://doi.org/10.1007/s11705-015-1544-0
  本期目录
Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes
Shen Huang1,2,Xudong Feng1,*(),Chun Li1
1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2. College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan 450002, China
 全文: PDF(1375 KB)   HTML
Abstract

β-Glucuronidase from Penicillium purpurogenum Li-3 (PGUS) can efficiently hydrolyze glycyrrhizin into the more valuable glycyrrhetic acid monoglucuronide. However, a low productivity of PGUS and the lack of an effective separation strategy have significantly limited its industrial applications. Therefore, the production of PGUS has been improved by optimizing both the fermentation and purification strategies. A two-stage fermentation strategy was developed where PGUS was first grown with glucose and then PGUS was produced in the presence of glycyrrhizin as an inducer. By using this strategy, the biomass was increased 1.5 times and the PGUS activity increased 5.4 times compared to that when glycyrrhizin was used as the sole carbon source. The amount of PGUS produced was increased another 16.6% when the fermentation was expanded to a 15-L fermenter. An effective protocol was also established to purify the PGUS using a sequential combination of hydrophobic, strong anion-exchange and gel filtration chromatography. This protocol had a recovery yield of 6% and gave PGUS that was 39 times purer than the crude PGUS. The purified PGUS had a specific activity of 350 U·mg−1.

Key wordsβ-glucuronidase    glycyrrhetic acid monoglucuronide    cell disruption    purification    chromatography
收稿日期: 2015-07-08      出版日期: 2015-11-26
Corresponding Author(s): Xudong Feng   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 501-510.
Shen Huang,Xudong Feng,Chun Li. Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes. Front. Chem. Sci. Eng., 2015, 9(4): 501-510.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1544-0
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I4/501
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Purification steps Total protein /mg Total activity /U Specific activity /U·mg−1 Recovery yield % Purification factor
Supernatant 266 2634 9 100 1
Acetone precipitation 25 2007 80 76 9
Hydrophobic interaction 5 967 188 38 21
Strong anion exchange 3 483 308 18 34
Gel filtration 0.4 140 350 6 39
Tab.1  
1 Makino  T, Okajima  K, Uebayashi  R, Ohtake  N, Inoue  K, Mizukami  H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11 beta-hydroxysteroid dehydrogenase 2. Journal of Pharmacology and Experimental Therapeutics, 2012, 342(2): 297–304
https://doi.org/10.1124/jpet.111.190009
2 Seki  H, Ohyama  K, Sawai  S, Mizutani  M, Ohnishi  T, Sudo  H, Akashi  T, Aoki  T, Saito  K, Muranaka  T. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204–14209
https://doi.org/10.1073/pnas.0803876105
3 Akao  T. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Biological & Pharmaceutical Bulletin, 2000, 23(12): 1418–1423
https://doi.org/10.1248/bpb.23.1418
4 Matsui  S, Matsumoto  H, Sonoda  Y, Ando  K, Aizu-Yokota  E, Sato  T, Kasahara  T. Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. International Immunopharmacology, 2004, 4(13): 1633–1644
https://doi.org/10.1016/j.intimp.2004.07.023
5 Doll  R, Hill  I D, Hutton  C, Underwood  D J V II. Clinical trial of a triterpenoid liquorice compound in gastric and duodenal ulcer. Lancet, 1962, 280(7260): 793–796
https://doi.org/10.1016/S0140-6736(62)92588-6
6 Pompei  R, Flore  O, Marccialis  M A, Pani  A, Loddo  B. Glycyrrhizic acid inhibits virus growth and inactivates virus-particles. Nature, 1979, 281(5733): 689–690
https://doi.org/10.1038/281689a0
7 Shiota  G, Harada  K, Ishida  M, Tomie  Y, Okubo  M, Katayama  S, Ito  H, Kawasaki  H. Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice. Carcinogenesis, 1999, 20(1): 59–63
https://doi.org/10.1093/carcin/20.1.59
8 Isbrucker  R A, Burdock  G A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology, 2006, 46(3): 167–192
https://doi.org/10.1016/j.yrtph.2006.06.002
9 Feng  S J, Li  C, Xu  X L, Wang  X Y. Screening strains for directed biosynthesis of beta-D-mono-glucuronide-glycyrrhizin and kinetics of enzyme production. Journal of Molecular Catalysis. B, Enzymatic, 2006, 43(1−4): 63–67
https://doi.org/10.1016/j.molcatb.2006.06.016
10 Zou  S P, Zhou  J J, Kaleem  I, Xie  L P, Liu  G Y, Li  C. Preparative enrichment and separation of glycyrrhetinic acid monoglucuronide from fermentation broths with macroporous resins. Separation Science and Technology, 2012, 47(7): 1055–1062
https://doi.org/10.1080/01496395.2011.637280
11 Zou  S P, Liu  G Y, Kaleem  I, Li  C. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing beta-glucuronidase from Penicillium purpurogenum Li-3. Process Biochemistry, 2013, 48(2): 358–363
https://doi.org/10.1016/j.procbio.2012.12.008
12 Qi  F, Kaleem  I, Lv  B, Guo  X, Li  C. Enhancement of recombinant beta-D-glucuronidase production under low-shear modeled microgravity in Pichia pastoris. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2011, 86(4): 505–511
https://doi.org/10.1002/jctb.2541
13 Mizutani  K, Kuramoto  T, Tamura  Y, Ohtake  N, Doi  S, Nakaura  M, Tanaka  O. Sweetness of glycyrrhetic acid 3-O-beta-D-monoglucuronide and the related glycosides. Bioscience, Biotechnology, and Biochemistry, 1994, 58(3): 554–555
https://doi.org/10.1271/bbb.58.554
14 Park  H Y, Park  S H, Yoon  H K, Han  M J, Kim  D H. Anti-allergic activity of 18 beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Archives of Pharmacal Research, 2004, 27(1): 57–60
https://doi.org/10.1007/BF02980047
15 Maitraie  D, Hung  C F, Tu  H Y, Liou  Y T, Wei  B L, Yang  S C, Wang  J P, Lin  C N. Synthesis, anti-inflammatory, and antioxidant activities of 18 beta-glycyrrhetinic acid derivatives as chemical mediators and xanthine oxidase inhibitors. Bioorganic & Medicinal Chemistry, 2009, 17(7): 2785–2792
https://doi.org/10.1016/j.bmc.2009.02.025
16 Zou  S, Guo  S, Kaleem  I, Li  C. Purification, characterization and comparison of Penicillium purpurogenum beta-glucuronidases expressed in Escherichia coli and Pichia pastoris. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(10): 1913–1919
https://doi.org/10.1002/jctb.4050
17 Song  X, Jiang  Z, Li  L, Wu  H. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability. Frontiers of Chemical Science and Engineering, 2014, 8(3): 353–361
https://doi.org/10.1007/s11705-014-1421-2
18 Kim  D H, Jin  Y H, Jung  E A, Han  M J, Kobashi  K. Purification and characterization of beta-glucuronidase from Escherichia coli HGU-3, a human intestinal bacterium. Biological & Pharmaceutical Bulletin, 1995, 18(9): 1184–1188
https://doi.org/10.1248/bpb.18.1184
19 Akao  T. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp GLH and Ruminococcus sp PO1-3. Biological & Pharmaceutical Bulletin, 2000, 23(2): 149–154
https://doi.org/10.1248/bpb.23.149
20 Amin  H A S, El-Menoufy  H A, El-Mehalawy  A A, Mostafa  E S. Biosynthesis of glycyrrhetinic acid 3-O-mono-beta-D-glucuronide by free and immobilized Aspergillus terreus beta-D-glucuronidase. Journal of Molecular Catalysis. B, Enzymatic, 2011, 69(1-2): 54–59
https://doi.org/10.1016/j.molcatb.2010.12.010
21 Kuramoto  T, Ito  Y, Oda  M, Tamura  Y, Kitahata  S. Microbial-production of glycyrrhetic acid 3-O-mono-beta-D-glucuronide from glycyrrhizin by Cryptococcus-magnus MG-27. Bioscience, Biotechnology, and Biochemistry, 1994, 58(3): 455–458
https://doi.org/10.1271/bbb.58.455
22 Lu  D Q, Li  H, Dai  Y, Ouyang  P K. Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck. Journal of Molecular Catalysis. B, Enzymatic, 2006, 43(1−4): 148–152
https://doi.org/10.1016/j.molcatb.2006.07.011
23 Bradford  M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1−2): 248–254
https://doi.org/10.1016/0003-2697(76)90527-3
24 Papagianni  M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 2004, 22(3): 189–259
https://doi.org/10.1016/j.biotechadv.2003.09.005
25 Posch  A E, Herwig  C, Spadiut  O. Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 2013, 31(1): 37–44
https://doi.org/10.1016/j.tibtech.2012.10.008
26 Choonia  H S, Saptarshi  S D, Lele  S S. Release of intracellular beta-galactosidase from Lactobacillus acidophilus and L-asparaginase from Pectobacterium carotovorum by high-pressure homogenization. Chemical Engineering Communications, 2013, 200(11): 1415–1424
https://doi.org/10.1080/00986445.2012.751376
27 Liu  Y, Pietzsch  M, Ulrich  J. Purification of L-asparaginase II by crystallization. Frontiers of Chemical Science and Engineering, 2013, 7(1): 37–42
https://doi.org/10.1007/s11705-013-1303-z
28 Park  H Y, Kim  N Y, Han  M J, Bae  E A, Kim  D H. Purification and characterization of two novel beta-D-glucuronidases converting glycyrrhizin to 18 beta-glycyrrhetinic acid-3-O-beta-D-glucuronide from Streptococcus LJ-22. Journal of Microbiology and Biotechnology, 2005, 15(4): 792–799
29 Kuroyama  H, Tsutsui  N, Hashimoto  Y, Tsumuraya  Y. Purification and characterization of a beta-glucuronidase from Aspergillus niger. Carbohydrate Research, 2001, 333(1): 27–39
https://doi.org/10.1016/S0008-6215(01)00114-8
30 Sakurama  H, Kishino  S, Uchibori  Y, Yonejima  Y, Ashida  H, Kita  K, Takahashi  S, Ogawa  J. beta-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30. Applied Microbiology and Biotechnology, 2014, 98(9): 4021–4032
https://doi.org/10.1007/s00253-013-5325-8
31 Nguyen  Q D, Rezessy-Szabo  J M, Bhat  M K, Hoschke  A. Purification and some properties of beta-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 2005, 40(7): 2461–2466
https://doi.org/10.1016/j.procbio.2004.09.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed