Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2016, Vol. 10 Issue (1): 16-38   https://doi.org/10.1007/s11705-015-1545-z
  本期目录
Development, applications and challenges of ReaxFF reactive force field in molecular simulations
You Han1, Dandan Jiang1, Jinli Zhang1(), Wei Li1, Zhongxue Gan2, Junjie Gu3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. ENN Group, State Key Laboratory of Low Carbon Energy of Coal, Langfang 065001, China
3. Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada
 全文: PDF(2788 KB)   HTML
文章导读  
Abstract

As an advanced and new technology in molecular simulation fields, ReaxFF reactive force field has been developed and widely applied during the last two decades. ReaxFF bridges the gap between quantum chemistry (QC) and non-reactive empirical force field based molecular simulation methods, and aims to provide a transferable potential which can describe many chemical reactions with bond formation and breaking. This review presents an overview of the development and applications of ReaxFF reactive force field in the fields of reaction processes, biology and materials, including (1) the mechanism studies of organic reactions under extreme conditions (like high temperatures and pressures) related with high-energy materials, hydrocarbons and coals, (2) the structural properties of nanomaterials such as graphene oxides, carbon nanotubes, silicon nanowires and metal nanoparticles, (3) interfacial interactions of solid-solid, solid-liquid and biological/inorganic surfaces, (4) the catalytic mechanisms of many types of metals and metal oxides, and (5) electrochemical mechanisms of fuel cells and lithium batteries. The limitations and challenges of ReaxFF reactive force field are also mentioned in this review, which will shed light on its future applications to a wider range of chemical environments.

Key wordsReaxFF    reaction mechanism    nanomaterials    interfacial interaction    catalyst    fuel cell
收稿日期: 2015-07-12      出版日期: 2016-02-29
Corresponding Author(s): Jinli Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 16-38.
You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1545-z
https://academic.hep.com.cn/fcse/CN/Y2016/V10/I1/16
Fig.1  
Time Development
2010.02 C/H/Ni ReaxFF with parameters describing C?C, C?H, C?Ni, H?Ni and Ni?Ni bonding [20].
2010.02?2010.08 Cu/O/H/Cl ReaxFF developed by extensive training against a large database of QM-based structures and energies [21,22].
2010.04 ReaxFF associated with ammonia borane [23].
2010.05 Fe/O/H ReaxFF containing structures, energies and reactions relevant to the Fe2+/Fe3+ water system [24].
2010.09 Gold-oxygen ReaxFF related to binding energies, heats of formation of gold oxides and equations of state of gold oxides [25].
2010.12 ReaxFF associated with glycine to reproduce the quantum mechanically derived energies of species in several glycine conformers and glycine-water complexes training sets [26].
2011.01 ReaxFF with parameters optimized against a training set containing reaction energy and transition state data of important reactions of hydrogen combustion [27].
2011.07 Au-S-C-H ReaxFF to simulate gold-thiol systems and study cluster deposition on self-assembled monolayers [28].
2011.08 ReaxFF for aqueous-calcium carbonate systems [29].
2011.11 Li-Al-Si-O ReaxFF developed by DFT calculations of structural properties of a number of bulk phase oxides, silicates and aluminates, as well as of several representative clusters [30].
2012.03 Ca/Al/H/O/S ReaxFF to describe the structures, energetics, and forces from QM on prototypical systems [31].
2012.11 Fe/Al/Ni alloys ReaxFF based on QM calculations including equations of state of alloy crystal phases, surface energies, and adatom binding energy at various metal surface sites to describe bulk phase behavior at a wide range of pressure conditions [32].
2012.12 ReaxFFGSi SiO based on previous ReaxFFSiO to describe oxygen-silica gas-surface interaction [33].
2013.01 ReaxFF for hydridopolycarbosilane (HPCS) to describe the process involved in the thermal decomposition of HPCS to form SiC nanoporous membranes [34].
2013.02 ReaxFF for Zirconium and Hafnium Di-Boride to enable modeling of chemical reactions [35].
2013.02 ReaxFF for the [Nb6O19H x](8−x)− Lindqvist polyoxoanion to investigate the properties of the [Nb6O19H x](8−x)− Lindqvist polyoxoanion, x = 0−8, in water [36].
2013.05 Ti-O-H ReaxFF based on DFT calculations on molecular clusters and periodic systems (both bulk crystals and surfaces) to reproduce accurately the QM training set for structures and energetics of small clusters and describe the relative energetics for rutile, brookite, and anatase [37].
2013.05 ReaxFF for aluminum-molybdenum alloy to study the thermite reactions of Al-MoO3 system [38].
2013.05 ReaxFF for magnesium sulfate hydrates using DFT data to accurately simulate the dynamics of the systems [39].
2013.07 Pd-O ReaxFF for oxidation process over Pd catalysts [40].
2013.07 ReaxFF for peptide and protein based on previous glycine parameters to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution [41].
2013.09 Au-S-C-H ReaxFF improved with good agreement with DFT geometries of small clusters and gold-thiolate nanoparticles [42].
2013.10 Li-Si ReaxFF using the Si parameters developed by van Duin et al. [6] and being further trained to model Li-Si systems [43].
2014.01 ReaxFF parametrized for ammonium nitrate [44].
2014.06 ReaxFF for electrophilic substitution of an aromatic system because the pre-existing ReaxFF for C/H/O/Si was unable to reproduce the required C?C bond formation for benzene or twin monomer [45].
2014.08 ReaxFF optimized to model the gelation of alkoxysilanes in bulk precursor solution [46].
2014.09 ReaxFF to study the influence of intrinsic point defects on the chemistry with TiO2 condensed phases [47].
2014.10 ReaxFF for tetrabutylphosphonium glycinate/CO2 mixtures [48].
2014.11 ReaxFF parameters describing Pt-Pt and Pt-O interactions [49].
2015.02 ReaxFF for aluminum-nitrogen interaction embedded in the combination of the aluminum-water and glycine force fields previously defined [50].
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 N L Allinger, Y H Yuh, J H Lii. Molecular mechanics. The MM3 force field for hydrocarbons.1. Journal of the American Chemical Society, 1989, 111(23): 8551–8566
https://doi.org/10.1021/ja00205a001
2 N L Allinger, F Li, L Yan, J C Tai. Molecular mechanics (MM3) calculations on conjugated hydrocarbons. Journal of Computational Chemistry, 1990, 11(7): 868–895
https://doi.org/10.1002/jcc.540110709
3 S L Mayo, B D Olafson, W A Goddard. Dreiding: A generic force-field for molecular simulations. Journal of Physical Chemistry, 1990, 94(26): 8897–8909
https://doi.org/10.1021/j100389a010
4 A K Rappé, C J Casewit, K S Colwell, W A Goddard, W M Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035
https://doi.org/10.1021/ja00051a040
5 A C T van Duin, S Dasgupta, F Lorant, W A Goddard, F F Reax. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409
https://doi.org/10.1021/jp004368u
6 A C T van Duin, A Strachan, S Stewman, Q S Zhang, X Xu, W A Goddard. ReaxFFSiO reactive force field for silicon and silicon oxide systems. Journal of Physical Chemistry A, 2003, 107(19): 3803–3811
https://doi.org/10.1021/jp0276303
7 S S Han, J K Kang, H M Lee, A C T van Duin, W A Goddard. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development. Journal of Chemical Physics, 2005, 123(11): 114703-1–114703-8
8 Q Zhang. T Ҫağin, A van Duin, W A Goddard, Y Qi, L G Hector. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(4): 045423-1–045423-11
9 S Cheung, W Q Deng, A C T van Duin, W A Goddard. ReaxFFMgH reactive force field for magnesium hydride systems. Journal of Physical Chemistry A, 2005, 109(5): 851–859
https://doi.org/10.1021/jp0460184
10 K D Nielson, A C T van Duin, J Oxgaard, W Q Deng, W A Goddard. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Journal of Physical Chemistry A, 2005, 109(3): 493–499
https://doi.org/10.1021/jp046244d
11 M J S Dewer, W Thiel. Ground states of molecules. 38. The MNDO method approximations and parameters. Journal of the American Chemical Society, 1977, 99(15): 4899–4907
https://doi.org/10.1021/ja00457a004
12 E Anders, R Koch, P Freunscht. Optimization and application of lithium parameters for PM3. Journal of Computational Chemistry, 1993, 14(11): 1301–1312
https://doi.org/10.1002/jcc.540141106
13 S S Han, A C T van Duin, W A Goddard, H M Lee. Optimization and application of lithium parameters for the reactive force field, ReaxFF. Journal of Physical Chemistry A, 2005, 109(20): 4575–4582
https://doi.org/10.1021/jp051450m
14 W A Goddard, A van Duin, K Chenoweth, M J Cheng, S Pudar, J Oxgaard, B Merinov, Y H Jang, P Persson. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x. Topics in Catalysis, 2006, 38(1-3): 93–103
https://doi.org/10.1007/s11244-006-0074-x
15 D Raymand, A C T van Duin, M Baudin, K Hermansson. A reactive force field (ReaxFF) for zinc oxide. Surface Science, 2008, 602(5): 1020–1031
https://doi.org/10.1016/j.susc.2007.12.023
16 J G O Ojwang, R van Santen, G J Kramer, A C T van Duin, W A Goddard. Modeling the sorption dynamics of NaH using a reactive force field. Journal of Chemical Physics, 2008, 128(16): 164714-1–164714-9
https://doi.org/10.1063/1.2908737
17 K Chenoweth, A C T van Duin, P Persson, M J Cheng, J Oxgaard, W A Goddard. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry C, 2008, 112(37): 14645–14654
https://doi.org/10.1021/jp802134x
18 T T Järvi, A Kuronen, M Hakala, K Nordlund, A C T van Duin, W A Goddard III, T Jacob. Development of a ReaxFF description for gold. European Physical Journal B, 2008, 66(1): 75–79
https://doi.org/10.1140/epjb/e2008-00378-3
19 A C T van Duin, B V Merinov, S S Han, C O Dorso, W A Goddard. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. Journal of Physical Chemistry A, 2008, 112(45): 11414–11422
https://doi.org/10.1021/jp801082q
20 J E Mueller, A C T van Duin, W A Goddard III. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. Journal of Physical Chemistry C, 2010, 114(11): 4939–4949
https://doi.org/10.1021/jp9035056
21 O Rahaman, A C T van Duin, V S Bryantsev, J E Mueller, S D Solares, W A Goddard III, D J Doren. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Journal of Physical Chemistry A, 2010, 114(10): 3556–3568
https://doi.org/10.1021/jp9090415
22 A C T van Duin, V S Bryantsev, M S Diallo, W A Goddard, O Rahaman, D J Doren, D Raymand, K Hermansson. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. Journal of Physical Chemistry A, 2010, 114(35): 9507–9514
https://doi.org/10.1021/jp102272z
23 M R Weismiller, A C T van Duin, J Lee, R A Yetter. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Journal of Physical Chemistry A, 2010, 114(17): 5485–5492
https://doi.org/10.1021/jp100136c
24 M Aryanpour, A C T van Duin, J D Kubicki. Development of a reactive force field for iron-oxyhydroxide systems. Journal of Physical Chemistry A, 2010, 114(21): 6298–6307
https://doi.org/10.1021/jp101332k
25 K Joshi, A C T van Duin, T Jacob. Development of a ReaxFF description of gold oxides and initial application to cold welding of partially oxidized gold surfaces. Journal of Materials Chemistry, 2010, 20(46): 10431–10437
https://doi.org/10.1039/c0jm01556c
26 O Rahaman, A C T van Duin, W A Goddard III, D J Doren. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. Journal of Physical Chemistry B, 2011, 115(2): 249–261
https://doi.org/10.1021/jp108642r
27 S Agrawalla, A C T van Duin. Development and application of a ReaxFF reactive force field for hydrogen combustion. Journal of Physical Chemistry A, 2011, 115(6): 960–972
https://doi.org/10.1021/jp108325e
28 T T Järvi, A C T van Duin, K Nordlund, W A Goddard III. Development of interatomic ReaxFF potentials for Au-S-C-H systems. Journal of Physical Chemistry A, 2011, 115(37): 10315–10322
https://doi.org/10.1021/jp201496x
29 J D Gale, P Raiteri, A C T van Duin. A reactive force field for aqueous-calcium carbonate systems. Physical Chemistry Chemical Physics, 2011, 13(37): 16666–16679
https://doi.org/10.1039/c1cp21034c
30 B Narayanan, A C T van Duin, B B Kappes, I E Reimanis, C V Ciobanu. A reactive force field for lithium-aluminum silicates with applications to eucryptite phases. Modelling and Simulation in Materials Science and Engineering, 2012, 20(1): 015002-1–015002-24
https://doi.org/10.1088/0965-0393/20/1/015002
31 L C Liu, A Jaramillo-Botero, W A Goddard III, H Sun. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Journal of Physical Chemistry A, 2012, 116(15): 3918–3925
https://doi.org/10.1021/jp210135j
32 Y K Shin, H Kwak, C Y Zou, A V Vasenkov, A C T van Duin. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: Molecular dynamics study of elastic constants, diffusion, and segregation. Journal of Physical Chemistry A, 2012, 116(49): 12163–12174
https://doi.org/10.1021/jp308507x
33 A D Kulkarni, D G Truhlar, S G Srinivasan, A C T van Duin, P Norman, T E Schwartzentruber. Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential. Journal of Physical Chemistry C, 2013, 117(1): 258–269
https://doi.org/10.1021/jp3086649
34 S Naserifar, L C Liu, W A Goddard III, T T Tsotsis, M Sahimi. Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field. Journal of Physical Chemistry C, 2013, 117(7): 3308–3319
https://doi.org/10.1021/jp3078002
35 A Gouissem, W Fan, A C T van Duin, P Sharma. A reactive force-field for Zirconium and hafnium di-boride. Computational Materials Science, 2013, 70: 171–177
https://doi.org/10.1016/j.commatsci.2012.12.038
36 A L Kaledin, A C T van Duin, C L Hill, D G Musaev. Parameterization of reactive force field: Dynamics of the [Nb6O19H x](8−x)− Lindqvist polyoxoanion in bulk water. Journal of Physical Chemistry A, 2013, 117(32): 6967–6974
https://doi.org/10.1021/jp312033p
37 S Y Kim, N Kumar, P Persson, J Sofo, A C T van Duin, J D Kubicki. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir, 2013, 29(25): 7838–7846
https://doi.org/10.1021/la4006983
38 W X Song, S J Zhao. Development of the ReaxFF reactive force field for aluminum-molybdenum alloy. Journal of Materials Research, 2013, 28(9): 1155–1164
https://doi.org/10.1557/jmr.2013.66
39 E Iype, M Hütter, A P J Jansen, S V Nedea, C C M Rindt. Parameterization of a reactive force field using a Monte Carlo algorithm. Journal of Computational Chemistry, 2013, 34(13): 1143–1154
https://doi.org/10.1002/jcc.23246
40 T P Senftle, R J Meyer, M J Janik, A C T van Duin. Development of a ReaxFF potential for Pd/O and application to palladium oxide formation. Journal of Chemical Physics, 2013, 139(4): 044109-1–044109-15
https://doi.org/10.1063/1.4815820
41 S Monti, A Corozzi, P Fristrup, K L Joshi, Y K Shin, P Oelschlaeger, A C T van Duin, V Barone. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Physical Chemistry Chemical Physics, 2013, 15(36): 15062–15077
https://doi.org/10.1039/c3cp51931g
42 G T Bae, C M Aikens. Improved ReaxFF force field parameters for Au-S-C-H systems. Journal of Physical Chemistry A, 2013, 117(40): 10438–10446
https://doi.org/10.1021/jp405992m
43 F F Fan, S Huang, H Yang, M Raju, D Datta, V B Shenoy, A C T van Duin, S L Zhang, T Zhu. Mechanical properties of amorphous Li xSi alloys: A reactive force field study. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 074002-1–074002-15
https://doi.org/10.1088/0965-0393/21/7/074002
44 T R Shan, A C T van Duin, A P Thompson. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition. Journal of Physical Chemistry A, 2014, 118(8): 1469–1478
https://doi.org/10.1021/jp408397n
45 T Schönfelder, J Friedrich, J Prehl, S Seeger, S Spange, K H Hoffmann. Reactive force field for electrophilic substitution at an aromatic system in twin polymerization. Chemical Physics, 2014, 440: 119–126
https://doi.org/10.1016/j.chemphys.2014.06.003
46 J D Deetz, R Faller. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. Journal of Physical Chemistry B, 2014, 118(37): 10966–10978
https://doi.org/10.1021/jp504138r
47 S Huygh, A Bogaerts, A C T van Duin, E C Neyts. Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Computational Materials Science, 2014, 95: 579–591
https://doi.org/10.1016/j.commatsci.2014.07.056
48 B Zhang, A C T van Duin, J K Johnson. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. Journal of Physical Chemistry B, 2014, 118(41): 12008–12016
https://doi.org/10.1021/jp5054277
49 D Fantauzzi, J Bandlow, L Sabo, J E Mueller, A C T van Duin, T Jacob. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. Physical Chemistry Chemical Physics, 2014, 16(42): 23118–23133
https://doi.org/10.1039/C4CP03111C
50 F O V Mackenzie, B J Thijsse. Study of metal/epoxy interfaces between epoxy precursors and metal surfaces using a newly developed reactive force field for alumina-amine adhesion. Journal of Physical Chemistry C, 2015, 119(9): 4796–4804
https://doi.org/10.1021/jp5105328
51 A C T van Duin, M Raju, S Srinivasan, J Yeon, S Y Kim, T Senftle, K Joshi. Development and application of the ReaxFF reactive force field method. LAMMPS workshop. Department of Mechanical and Nuclear Engineering Pennsylvania State University, 2013: 12
52 A Strachan, A C T van Duin, D Chakraborty, S Dasgupta, W A Goddard. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003, 91(9): 098301-1–098301-4
https://doi.org/10.1103/PhysRevLett.91.098301
53 A C T van Duin, Y Zeiri, F Dubnikova, R Kosloff, W A Goddard. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127(31): 11053–11062
https://doi.org/10.1021/ja052067y
54 F Dubnikova, R Kosloff, Y Zeiri, Z Karpas. Novel approach to the detection of triacetone triperoxide (TATP): Its structure and its complexes with ions. Journal of Physical Chemistry A, 2002, 106(19): 4951–4956
https://doi.org/10.1021/jp014189s
55 E Schmidt. Hydrazine and its derivatives: Preparation, properties and applications. New York: Wiley, 1984: 1243–1260
56 P W Cooper. Explosive Engineering. New York: Wiley, 1996: 251–273
57 T G Soares Neto, A J G Cobo, G M Cruz. Textural properties evolution of Ir and Ru supported on alumina catalysts during hydrazine decomposition in satellite thruster. Applied Catalysis A, General, 2003, 250(2): 331–340
https://doi.org/10.1016/S0926-860X(03)00301-6
58 L Z Zhang, A C T van Duin, S V Zybin, W A Goddard. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Journal of Physical Chemistry B, 2009, 113(31): 10770–10778
https://doi.org/10.1021/jp900194d
59 Q An, Y Liu, S V Zybin, H Kim, W A Goddard III. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. Journal of Physical Chemistry C, 2012, 116(18): 10198–10206
https://doi.org/10.1021/jp300711m
60 D Z Guo, Q An, W A Goddard III, S V Zybin, F L Huang. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. Journal of Physical Chemistry C, 2014, 118(51): 30202–30208
https://doi.org/10.1021/jp5093527
61 D Furman, R Kosloff, F Dubnikova, S V Zybin, W A Goddard III, N Rom, B Hirshberg, Y Zeiri. Decomposition of condensed phase energetic materials: Interplay between uni- and bimolecular mechanisms. Journal of the American Chemical Society, 2014, 136(11): 4192–4200
https://doi.org/10.1021/ja410020f
62 Q L Yan, S Zeman, P E Sánchez Jiménez, T L Zhang, L A Pérez-Maqueda, A Elbeih. The mitigation effect of synthetic polymers on initiation reactivity of CL-20: Physical models and chemical pathways of thermolysis. Journal of Physical Chemistry C, 2014, 118(40): 22881–22895
https://doi.org/10.1021/jp505955n
63 J L Zhang, J T Gu, Y Han, W Li, Z X Gan, J J Gu. Supercritical water oxidation vs. supercritical gasification: Which process is better for explosive wastewater treatment? Industrial & Engineering Chemistry Research, 2015, 54(4): 1251–1260
https://doi.org/10.1021/ie5043903
64 A C T van Duin, J S S Damsté. Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry, 2003, 34(4): 515–526
https://doi.org/10.1016/S0146-6380(02)00247-4
65 K Chenoweth, A C T van Duin, W A Goddard. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053
https://doi.org/10.1021/jp709896w
66 A J Page, B Moghtaderi. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. Journal of Physical Chemistry A, 2009, 113(8): 1539–1547
https://doi.org/10.1021/jp809576k
67 Z H He, X B Li, L M Liu, W J Zhu. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel, 2014, 124: 85–90
https://doi.org/10.1016/j.fuel.2014.01.070
68 Z H He, X B Li, W J Zhu, L M Liu, G F Ji. Effect of water on gas explosions: Combined ReaxFF and ab initio MD calculations. RSC Advances, 2014, 4(66): 35048–35054
https://doi.org/10.1039/C4RA04178J
69 K Chenoweth, A C T van Duin, S Dasgupta, W A Goddard III. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Journal of Physical Chemistry A, 2009, 113(9): 1740–1746
https://doi.org/10.1021/jp8081479
70 Q D Wang, J B Wang, J Q Li, N X Tan, X Y Li. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combustion and Flame, 2011, 158(2): 217–226
https://doi.org/10.1016/j.combustflame.2010.08.010
71 X M Cheng, Q D Wang, J Q Li, J B Wang, X Y Li. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperature. Journal of Physical Chemistry A, 2012, 116(40): 9811–9818
https://doi.org/10.1021/jp304040q
72 World Coal Association. Annual Energy Report, 2011.
73 E Salmon, A C T van Duin, F Lorant, P M Marquaire, W A Goddard III. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Organic Geochemistry, 2009, 40(12): 1195–1209
https://doi.org/10.1016/j.orggeochem.2009.09.001
74 F Castro-Marcano, A M Kamat, M F Russo Jr, A C T van Duin, J P Mathews. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, 2012, 159(3): 1272–1285
https://doi.org/10.1016/j.combustflame.2011.10.022
75 B Chen, X Y Wei, Z S Yang, C Liu, X Fan, Y Qing, Z M Zong. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds. Energy & Fuels, 2012, 26(2): 984–989
https://doi.org/10.1021/ef201234j
76 B Chen, Z J Diao, H Y Lu. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model. Fuel, 2014, 116: 7–13
https://doi.org/10.1016/j.fuel.2013.07.113
77 M Zheng, X X Li, J Liu, L Guo. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy & Fuels, 2013, 27(6): 2942–2951
https://doi.org/10.1021/ef400143z
78 J L Zhang, X X Weng, Y Han, W Li, J Y Cheng, Z X Gan, J J Gu. The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study. Fuel, 2013, 108: 682–690
https://doi.org/10.1016/j.fuel.2013.01.064
79 K Chenoweth, S Cheung, A C T van Duin, W A Goddard, E M Kober. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Journal of the American Chemical Society, 2005, 127(19): 7192–7202
https://doi.org/10.1021/ja050980t
80 D E Jiang, A C T van Duin, W A Goddard, S Dai. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field. Journal of Physical Chemistry A, 2009, 113(25): 6891–6894
https://doi.org/10.1021/jp902986u
81 Z Q Zhang, K F Yan, J L Zhang. ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures. RSC Advances, 2013, 3(18): 6401–6407
https://doi.org/10.1039/c3ra22902e
82 A Beste. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. Journal of Physical Chemistry A, 2014, 118(5): 803–814
https://doi.org/10.1021/jp410454q
83 A Beste. ReaxFF study of the oxidation of softwood lignin in view of carbon fiber production. Energy & Fuels, 2014, 28(11): 7007–7013
https://doi.org/10.1021/ef501901p
84 R Zhu, F Janetzko, Y Zhang, A C T van Duin, W A Goddard, D R Salahub. Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theoretical Chemistry Accounts, 2008, 120(4-6): 479–489
https://doi.org/10.1007/s00214-008-0440-9
85 R M Abolfath, A C T van Duin, T Brabec. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. Journal of Physical Chemistry A, 2011, 115(40): 11045–11049
https://doi.org/10.1021/jp204894m
86 R M Abolfath, D J Carlson, Z J Chen, R Nath. A molecular dynamics simulation of DNA damage induction by ionizing radiation. Physics in Medicine and Biology, 2013, 58(20): 7143–7157
https://doi.org/10.1088/0031-9155/58/20/7143
87 J L Zhang, J T Gu, Y Han, W Li, Z X Gan, J J Gu. Analysis of degradation mechanism of disperse orange 25 in supercritical water oxidation using molecular dynamic simulations based on the reactive force field. Journal of Molecular Modeling, 2015, 21(3): 54-1–54-13
88 X Huang, H Yang, A C T van Duin, K J Hsia, S L Zhang. Chemomechanics control of tearing paths in graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195453-1–195453-6
https://doi.org/10.1103/PhysRevB.85.195453
89 A Bagri, C Mattevi, M Acik, Y J Chabal, M Chhowalla, V B Shenoy. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010, 2(7): 581–587
https://doi.org/10.1038/nchem.686
90 N V Medhekar, A Ramasubramaniam, R S Ruoff, V B Shenoy. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano, 2010, 4(4): 2300–2306
https://doi.org/10.1021/nn901934u
91 S S Han, J K Kang, H M Lee, A C T van Duin, W A Goddard. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Applied Physics Letters, 2005, 86(20): 203108-1–203108-3
https://doi.org/10.1063/1.1929084
92 E C Neyts, A C T van Duin, A Bogaerts. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231
https://doi.org/10.1021/ja204023c
93 E Zaminpayma, K Mirabbaszadeh. Interaction between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field. Computational Materials Science, 2012, 58: 7–11
https://doi.org/10.1016/j.commatsci.2012.01.023
94 D Papkov, A M Beese, A Goponenko, Y Zou, M Naraghi, H D Espinosa, B Saha, G C Schatz, A Moravsky, R Loutfy, S T Nguyen, Y Dzenis. Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano, 2013, 7(1): 126–142
https://doi.org/10.1021/nn303423x
95 N Ning, F Calvo, A C T van Duin, D J Wales, H Vach. Spontaneous self-assembly of silica nanocages into inorganic framework materials. Journal of Physical Chemistry C, 2009, 113(2): 518–523
https://doi.org/10.1021/jp804528z
96 A P Garcia, M J Buehler. Bioinspired nanoporous silicon provides great toughness at great deformability. Computational Materials Science, 2010, 48(2): 303–309
https://doi.org/10.1016/j.commatsci.2010.01.011
97 A P Garcia, D Sen, M J Buehler. Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2011, 42A(13): 3889–3897
https://doi.org/10.1007/s11661-010-0477-y
98 S Nedd, T Kobayashi, C H Tsai, I I Slowing, M Pruski, M S Gordon. Using a reactive force field to correlate mobilities obtained from solid-state 13C NMR on mesoporous silica nanoparticle systems. Journal of Physical Chemistry C, 2011, 115(33): 16333–16339
https://doi.org/10.1021/jp204510m
99 U Khalilov, G Pourtois, A C T van Duin, E C Neyts. Self-limiting oxidation in small-diameter Si nanowires. Chemistry of Materials, 2012, 24(11): 2141–2147
https://doi.org/10.1021/cm300707x
100 P X Song, Y L Ding, D S Wen. A reactive molecular dynamic simulation of oxidation of a silicon nanocluster. Journal of Nanoparticle Research, 2013, 15(1): 1309-1–1309-11
101 J A Keith, D Fantauzzi, T Jacob, A C T van Duin. Reactive forcefield for simulating gold surfaces and nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235404-1–235404-8
https://doi.org/10.1103/PhysRevB.81.235404
102 C R Iacovella, W R French, B G Cook, P R C Kent, P T Cummings. Role of polytetrahedral structures in the elongation and rupture of gold nanowires. ACS Nano, 2011, 5(12): 10065–10073
https://doi.org/10.1021/nn203941r
103 M Raju, A C T van Duin, K A Fichthorn. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Letters, 2014, 14(4): 1836–1842
https://doi.org/10.1021/nl404533k
104 T P Senftle, M J Janik, A C T van Duin. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. Journal of Physical Chemistry C, 2014, 118(9): 4967–4981
https://doi.org/10.1021/jp411015a
105 H Y Cheng, Y A Zhu, D Chen, P O Åstrand, P Li, Z W Qi, X G Zhou. Evolution of carbon nanofiber-supported Pt nanoparticles of different particle sizes: A molecular dynamics study. Journal of Physical Chemistry C, 2014, 118(41): 23711–23722
https://doi.org/10.1021/jp505554w
106 X Q Zhang, E Iype, S V Nedea, A P J Jansen, B M Szyja, E J M Hensen, R A van Santen. Site stability on cobalt nanoparticles: A molecular dynamics ReaxFF reactive force field study. Journal of Physical Chemistry C, 2014, 118(13): 6882–6886
https://doi.org/10.1021/jp500053u
107 Q Zhang, Y Qi, L G Hector, T Ҫağin, W A Goddard. Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(4): 045406-1–045406-12
https://doi.org/10.1103/PhysRevB.72.045406
108 M F Russo Jr, R Li, M Mench, A C T van Duin. Molecular dynamic simulation of aluminum-water reactions using the ReaxFF reactive force field. International Journal of Hydrogen Energy, 2011, 36(10): 5828–5835
https://doi.org/10.1016/j.ijhydene.2011.02.035
109 J C Fogarty, H M Aktulga, A Y Grama, A C T van Duin, S A Pandit. A reactive molecular dynamics simulation of the silica-water interface. Journal of Chemical Physics, 2010, 132(17): 174704-1–174704-10
https://doi.org/10.1063/1.3407433
110 J Quenneville, R S Taylor, A C T van Duin. Reactive molecular dynamics studies of DMMP adsorption and reactivity on amorphous silica surfaces. Journal of Physical Chemistry C, 2010, 114(44): 18894–18902
https://doi.org/10.1021/jp104547u
111 U Khalilov, G Pourtois, A C T van Duin, E C Neyts. Hyperthermal oxidation of Si(100)2×1 surfaces: Effect of growth temperature. Journal of Physical Chemistry C, 2012, 116(15): 8649–8656
https://doi.org/10.1021/jp300506g
112 D Raymand, A C T van Duin, D Spångberg, W A Goddard III, K Hermansson. Water adsorption on stepped ZnO surfaces from MD simulation. Surface Science, 2010, 604(9-10): 741–752
https://doi.org/10.1016/j.susc.2009.12.012
113 D Raymand, A C T van Duin, W A Goddard III, K Hermansson, D Spångberg. Hydroxylation structure and proton transfer reactivity at the zinc oxide-water interface. Journal of Physical Chemistry C, 2011, 115(17): 8573–8579
https://doi.org/10.1021/jp106144p
114 M Raju, S Y Kim, A C T van Duin, K A Fichthorn. ReaxFF reactive force field study of the dissociation of water on titania surfaces. Journal of Physical Chemistry C, 2013, 117(20): 10558–10572
https://doi.org/10.1021/jp402139h
115 A Tilocca, A Selloni. Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) Surfaces. Journal of Physical Chemistry B, 2004, 108(15): 4743–4751
https://doi.org/10.1021/jp037685k
116 A Tilocca, A Selloni. DFT-GGA and DFT+U simulations of thin water layers on reduced TiO2 anatase. Journal of Physical Chemistry C, 2012, 116(14): 9114–9121
https://doi.org/10.1021/jp301624v
117 S Monti, A C T van Duin, S Y Kim, V Barone. Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: Computational investigations in the gas phase and in solution. Journal of Physical Chemistry C, 2012, 116(8): 5141–5150
https://doi.org/10.1021/jp2121593
118 C Li, S Monti, V Carravetta. Journey toward the surface: How glycine adsorbs on titania in water solution. Journal of Physical Chemistry C, 2012, 116(34): 18318–18326
https://doi.org/10.1021/jp3060729
119 S Monti, C Li, V Carravetta. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110). Journal of Physical Chemistry C, 2013, 117(10): 5221–5228
https://doi.org/10.1021/jp312828d
120 S Monti, V Carravetta, C Li, H Ågren. A computational study of the adsorption and reactive dynamics of diglycine on Cu(110). Journal of Physical Chemistry C, 2014, 118(7): 3610–3619
https://doi.org/10.1021/jp411191n
121 H B Su, R J Nielsen, A C T van Duin, W A Goddard III. Simulations on the effects of confinement and Ni-catalysis on the formation of tubular fullerene structures from peapod precursors. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(13): 134107-1–134107-5
https://doi.org/10.1103/PhysRevB.75.134107
122 J E Mueller, A C T van Duin, W A Goddard III. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. Journal of Physical Chemistry C, 2010, 114(12): 5675–5685
https://doi.org/10.1021/jp9089003
123 L J Meng, J Jiang, J L Wang, F Ding. Mechanism of metal catalyzed healing of large structural defects in graphene. Journal of Physical Chemistry C, 2014, 118(1): 720–724
https://doi.org/10.1021/jp409471a
124 W Somers, A Bogaerts, A C T van Duin, E C Neyts. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014 (154-155): 1–8
https://doi.org/10.1016/j.apcatb.2014.01.061
125 T P Senftle, A C T van Duin, M J Janik. Determining in situ phases of a nanoparticle catalyst via grand canonical Monte Carlo simulations with the ReaxFF potential. Catalysis Communications, 2014, 52: 72–77
https://doi.org/10.1016/j.catcom.2013.12.001
126 Z Z Lin. Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon, 2015, 86: 301–309
https://doi.org/10.1016/j.carbon.2015.02.014
127 W A Goddard, K Chenoweth, S Pudar, A C T van Duin, M J Cheng. Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Topics in Catalysis, 2008, 50(2-4): 2–18
https://doi.org/10.1007/s11244-008-9096-x
128 K Chenoweth, A C T van Duin, W A Goddard III. The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: Application to the Mo3VO x catalyst. Angewandte Chemie International Edition, 2009, 48(41): 7630–7634
https://doi.org/10.1002/anie.200902574
129 C Y Zhang, Y S Wen, X G Xue. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: Molecular dynamic simulations by molecular reactive force field. ACS Applied Materials & Interfaces, 2014, 6(15): 12235–12244
https://doi.org/10.1021/am501562m
130 C Bai, L C Liu, H Sun. Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a ReaxFF force field. Journal of Physical Chemistry C, 2012, 116(12): 7029–7039
https://doi.org/10.1021/jp300221j
131 W Goddard III, B Merinov, A van Duin, T Jacob, M Blanco, V Molinero, S S Jang, Y H Jang. Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Molecular Simulation, 2006, 32(3-4): 251–268
https://doi.org/10.1080/08927020600599709
132 A C T van Duin, B V Merinov, S S Jang, W A Goddard. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. Journal of Physical Chemistry A, 2008, 112(14): 3133–3140
https://doi.org/10.1021/jp076775c
133 B V Merinov, J E Mueller, A C T van Duin, Q An, W A Goddard III. ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell. Journal of Physical Chemistry Letters, 2014, 5(22): 4039–4043
https://doi.org/10.1021/jz501891y
134 D Bedrov, G D Smith, A C T van Duin. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: A molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A, 2012, 116(11): 2978–2985
https://doi.org/10.1021/jp210345b
135 H Li, X J Huang, L Q Chen, Z G Wu, Y Liang. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999, 2(11): 547–549
https://doi.org/10.1149/1.1390899
136 A Magasinski, P Dixon, B Hertzberg, A Kvit, J Ayala, G Yushin. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9(4): 353–358
https://doi.org/10.1038/nmat2725
137 S P Kim, D Datta, V B Shenoy. Atomistic mechanisms of phase boundary evolution during initial lithiation of crystalline silicon. Journal of Physical Chemistry C, 2014, 118(31): 17247–17253
https://doi.org/10.1021/jp502523t
138 M M Islam, V S Bryantsev, A C T van Duin. ReaxFF reactive force field simulations on the influence of Teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries. Journal of the Electrochemical Society, 2014, 161(8): E3009–E3014
https://doi.org/10.1149/2.005408jes
139 M M Islam, A Ostadhossein, O Borodin, A T Yeates, W W Tipton, R G Hennig, N Kumar, A C T van Duin. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Physical Chemistry Chemical Physics, 2015, 17(5): 3383–3393
https://doi.org/10.1039/C4CP04532G
140 H Jung, M Lee, B C Yeo, K R Lee, S S Han. Atomistic observation of the lithiation and delithiation behaviors of silicon nanowires using reactive molecular dynamics simulations. Journal of Physical Chemistry C, 2015, 119(7): 3447–3455
https://doi.org/10.1021/jp5094756
141 A K Rappé, W A Goddard. Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry, 1991, 95(8): 3358–3363
https://doi.org/10.1021/j100161a070
142 S M Valone, S R Atlas. An empirical charge transfer potential with correct dissociation limits. Journal of Chemical Physics, 2004, 120(16): 7262–7273
https://doi.org/10.1063/1.1676118
143 J Morales, T J Martínez. A new approach to reactive potentials with fluctuating charges: Quadratic valence-bond model. Journal of Physical Chemistry A, 2004, 108(15): 3076–3084
https://doi.org/10.1021/jp0369342
144 J Morales, T J Martínez. Classical fluctuating charge theories: The maximum entropy valence bond formalism and relationships to previous models. Journal of Physical Chemistry A, 2001, 105(12): 2842–2850
https://doi.org/10.1021/jp003823j
145 J H Chen, T D Martínez. QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chemical Physics Letters, 2007, 438(4-6): 315–320
https://doi.org/10.1016/j.cplett.2007.02.065
146 K Nomura, P E Small, R K Kalia, A Nakano, P Vashishta. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations. Computer Physics Communications, 2015, 192: 91–96
https://doi.org/10.1016/j.cpc.2015.02.023
147 K Nomura, R K Kalia, A Nakano, P Vashishta. A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations. Computer Physics Communications, 2008, 178(2): 73–87
https://doi.org/10.1016/j.cpc.2007.08.014
148 H M Aktulga, J C Fogarty, S A Pandit, A Y Grama. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 2012, 38(4-5): 245–259
https://doi.org/10.1016/j.parco.2011.08.005
149 H M Aktulga, S A Pandit, A C T van Duin, A Y Grama. Reactive molecular dynamics: Numerical methods and algorithmic techniques. SIAM Journal on Scientific Computing, 2012, 34(1): C1–C23
https://doi.org/10.1137/100808599
150 K Nomura, R K Kalia, A Nakano, P Vashishta, A C T van Duin, W A Goddard. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Physical Review Letters, 2007, 99(14): 148303-1–148303-4
https://doi.org/10.1103/PhysRevLett.99.148303
151 H P Chen, R K Kalia, E Kaxiras, G Lu, A Nakano, K Nomura, A C T van Duin, P Vashishta, Z S Yuan. Embrittlement of metal by solute segregation-induced amorphization. Physical Review Letters, 2010, 104(15): 155502-1–155502-4
https://doi.org/10.1103/PhysRevLett.104.155502
152 M Vedadi, A Choubey, K Nomura, R K Kalia, A Nakano, P Vashishta, A C T van Duin. Structure and dynamics of shock-induced nanobubble collapse in water. Physical Review Letters, 2010, 105(1): 014503-1–014503-4
https://doi.org/10.1103/PhysRevLett.105.014503
153 L C Liu, Y Liu, S V Zybin, H Sun, W A Goddard III. ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. Journal of Physical Chemistry A, 2011, 115(40): 11016–11022
https://doi.org/10.1021/jp201599t
154 E J Reed. Electron-ion coupling in shocked energetic materials. Journal of Physical Chemistry C, 2012, 116(3): 2205–2211
https://doi.org/10.1021/jp206769c
155 M M Kuklja, A B Kunz. Ab initio simulation of defects in energetic materials: Hydrostatic compression of cyclotrimethylene trinitramine. Journalof Applied Physics, 1999, 86(8): 4428–4434
https://doi.org/10.1063/1.371381
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed