Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.
. [J]. Frontiers of Chemical Science and Engineering, 2017, 11(2): 143-153.
Kaojin Wang, Satu Strandman, X. X. Zhu. A mini review: Shape memory polymers for biomedical applications. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
WeiZ G, SandstrorömR, MiyazakiS. Shape-memory materials and hybrid composites for smart systems. Part I Shape-memory materials.Journal of Materials Science, 1998, 33(15): 3743–3762 https://doi.org/10.1023/A:1004692329247
KratzK, VoigtU, LendleinA. Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies.Advanced Functional Materials, 2012, 22(14): 3057–3065 https://doi.org/10.1002/adfm.201200211
7
Enriquez-SaranoM, SchaffH V, OrszulakT A, TajikA J, BaileyK R, FryeR L. Valve repair improves the outcome of surgery for mitral regurgitation: A multivariate analysis.Circulation, 1995, 91(4): 1022–1028 https://doi.org/10.1161/01.CIR.91.4.1022
8
AlarcónC D H, PennadamS, AlexanderC. Stimuli responsive polymers for biomedical applications.Chemical Society Reviews, 2005, 34(3): 276–285 https://doi.org/10.1039/B406727D
ZhangH, XiaH, ZhaoY. Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials.Journal of Materials Chemistry, 2012, 22(3): 845–849 https://doi.org/10.1039/C1JM14615G
19
ZhangH, ZhaoY. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.ACS Applied Materials & Interfaces, 2013, 5(24): 13069–13075 https://doi.org/10.1021/am404087q
20
WuY, HuJ, ZhangC, HanJ, WangY, KumarB. A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer.Journal of Materials Chemsitry A, 2015, 3(1): 97–100 https://doi.org/10.1039/C4TA04881D
RazzaqM Y, BehlM, LendleinA. Magnetic memory effect of nanocomposites.Advanced Functional Materials, 2012, 22(1): 184–191 https://doi.org/10.1002/adfm.201101590
LiuC, QinH, MatherP T. Review of progress in shape-memory polymers.Journal of Materials Chemistry, 2007, 17(16): 1543–1558 https://doi.org/10.1039/b615954k
ZhaoQ, QiH J, XieT. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding.Progress in Polymer Science, 2015, 49-50: 79–120 https://doi.org/10.1016/j.progpolymsci.2015.04.001
34
RatnaD, Karger-KocsisJ. Recent advances in shape memory polymers and composites: A review.Journal of Materials Science, 2008, 43(1): 254–269 https://doi.org/10.1007/s10853-007-2176-7
LengJ, LanX, LiuY, DuS. Shape-memory polymers and their composites: Stimulus methods and applications.Progress in Materials Science, 2011, 56(7): 1077–1135 https://doi.org/10.1016/j.pmatsci.2011.03.001
37
HuangW M, YangB, ZhaoY, DingZ. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review.Journal of Materials Chemistry, 2010, 20(17): 3367–3381 https://doi.org/10.1039/b922943d
HuJ, ChenS. A review of actively moving polymers in textile applications.Journal of Materials Chemistry, 2010, 20(17): 3346–3355 https://doi.org/10.1039/b922872a
43
LiuY, DuH, LiuL, LengJ. Shape memory polymers and their composites in aerospace applications: A review.Smart Materials and Structures, 2014, 23(2): 023001 https://doi.org/10.1088/0964-1726/23/2/023001
44
SerranoM C, AmeerG A. Recent insights into the biomedical applications of shape-memory polymers.Macromolecular Bioscience, 2012, 12(9): 1156–1171 https://doi.org/10.1002/mabi.201200097
45
LendleinA, BehlM, HieblB, WischkeC. Shape-memory polymers as a technology platform for biomedical applications.Expert Review of Medical Devices, 2010, 7(3): 357–379 https://doi.org/10.1586/erd.10.8
46
ChanB Q Y, LowZ W K, HengS J W, ChanS Y, OwhC, LohX J. Recent advances in shape memory soft materials for biomedical applications.ACS Applied Materials & Interfaces, 2016, 8(16): 10070–10087 https://doi.org/10.1021/acsami.6b01295
47
ZhangR, WangY, WangK, ZhengG, LiQ, ShenC. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent.Polymer Bulletin, 2013, 70(1): 195–206 https://doi.org/10.1007/s00289-012-0814-y
48
SainiP, AroraM, KumarM N V R. Poly(lactic acid) blends in biomedical applications.Advanced Drug Delivery Reviews, 2016, 107: 47–59 https://doi.org/10.1016/j.addr.2016.06.014
49
ShasteenC, ChoyY B. Controlling degradation rate of poly(lactic acid) for its biomedical applications.Biomedical Engineering Letters, 2011, 1(3): 163–167 https://doi.org/10.1007/s13534-011-0025-8
MengQ, HuJ, HoK, JiF, ChenS. The shape memory properties of biodegradable chitosan/poly(L-lactide) composites.Journal of Polymers and the Environment, 2009, 17(3): 212–224 https://doi.org/10.1007/s10924-009-0141-z
53
FilionT M, XuJ, PrasadM L, SongJ. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.Biomaterials, 2011, 32(4): 985–991 https://doi.org/10.1016/j.biomaterials.2010.10.012
54
LiangJ Z, DuanD R, TangC Y, TsuiC P, ChenD Z. Flexural properties of poly-L-lactide and polycaprolactone shape memory composites filled with nanometer calcium carbonate.Journal of Macromolecular Science, Part B: Physics, 2013, 52(7): 964–972 https://doi.org/10.1080/00222348.2012.746572
55
KutikovA B, ReyerK A, SongJ. Shape memory performance of thermoplastic amphiphilic triblock copolymer poly(D, L-lactic acid-co-ethylene glycol-co-D, L-lactic acid) (PELA)/hydroxyapatite composites.Macromolecular Chemistry and Physics, 2014, 215(24): 2482–2490 https://doi.org/10.1002/macp.201400340
56
RuanC, WangY, ZhangM, LuoY, FuC, HuangM, SunJ, HuC. Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D, L-lactic acid) diol, hexamethylene diisocyanate and piperazine.Polymer International, 2012, 61(4): 524–530 https://doi.org/10.1002/pi.3197
57
RadjabianM, KishM H, MohammadiN. Structure-property relationship for poly(lactic acid) (PLA) filaments: Physical, thermomechanical and shape memory characterization.Journal of Polymer Research, 2012, 19(6): 9870 https://doi.org/10.1007/s10965-012-9870-0
LaiS M, WuW L, WangY J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends.Journal of Polymer Research, 2016, 23(5): 99 https://doi.org/10.1007/s10965-016-0993-6
60
ShenT, LuM, ZhouD, LiangL. Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends.Iranian Polymer Journal, 2012, 21(5): 317–323 https://doi.org/10.1007/s13726-012-0031-4
61
JingX, MiH Y, PengX F, TurngL S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends.Polymer Engineering and Science, 2015, 55(1): 70–80 https://doi.org/10.1002/pen.23873
62
YuanD, ChenZ, XuC, ChenK, ChenY. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization.ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2856–2865 https://doi.org/10.1021/acssuschemeng.5b00788
63
TsujimotoT, UyamaH. Full Biobased polymeric material from plant oil and poly(lactic acid) with a shape memory property.ACS Sustainable Chemistry & Engineering, 2014, 2(8): 2057–2062 https://doi.org/10.1021/sc500310s
64
LaiS M, LanY C. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends.Journal of Polymer Research, 2013, 20(5): 140 https://doi.org/10.1007/s10965-013-0140-6
65
RajaM, RyuS H, ShanmugharajA M. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites.European Polymer Journal, 2013, 49(11): 3492–3500 https://doi.org/10.1016/j.eurpolymj.2013.08.009
UleryB D, NairL S, LaurencinC T. Biomedical applications of biodegradable polymers.Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(12): 832–864 https://doi.org/10.1002/polb.22259
68
WoodruffM A, HutmacherD W. The return of a forgotten polymer-polycaprolactone in the 21st century.Progress in Polymer Science, 2010, 35(10): 1217–1256 https://doi.org/10.1016/j.progpolymsci.2010.04.002
69
DarneyP D, MonroeS E, KlaisleC M, AlvaradoA. Clinical evaluation of the Capronor contraceptive implant: Preliminary report.American Journal of Obstetrics and Gynecology, 1989, 160(5): 1292–1295 https://doi.org/10.1016/S0002-9378(89)80015-8
70
NöChelU, ReddyC S, UttamchandN K, KratzK, BehlM, LendleinA. Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment.European Polymer Journal, 2013, 49(9): 2457–2466 https://doi.org/10.1016/j.eurpolymj.2013.01.022
71
ChenW C, LaiS M, ChangM Y, LiaoZ C. Preparation and properties of natural rubber (NR)/polycaprolactone (PCL) bio-based shape memory polymer blends.Journal of Macromolecular Science, Part B: Physics, 2014, 53(4): 645–661 https://doi.org/10.1080/00222348.2013.860304
72
MyaK Y, GoseH B, PretschT, BotheM, HeC B. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance.Journal of Materials Chemistry, 2011, 21(13): 4827–4836 https://doi.org/10.1039/c0jm04459h
73
WengS, XiaZ, ChenJ, GongL. Shape memory properties of polycaprolactone-based polyurethanes prepared by reactive extrusion.Journal of Applied Polymer Science, 2013, 127(1): 748–759 https://doi.org/10.1002/app.37768
74
KashifM, YunB, LeeK S, ChangY W. Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: Sustained drug release and hydrolytic degradation.Materials Letters, 2016, 166: 125–128 https://doi.org/10.1016/j.matlet.2015.12.051
75
WangW, LiuD, LuL, ChenH, GongT, LvJ, ZhouS. The improvement of the shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment.Journal Materials Chemsitry A, 2016, 4(16): 5984–5992 https://doi.org/10.1039/C6TA00930A
76
WangL, YangX, ChenH, GongT, LiW, YangG, ZhouS. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups.ACS Applied Materials & Interfaces, 2013, 5(21): 10520–10528 https://doi.org/10.1021/am402091m
77
WeiM, ZhanM, YuD, XieH, HeM, YangK, WangY. Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity.ACS Applied Materials & Interfaces, 2015, 7(4): 2585–2596 https://doi.org/10.1021/am507575z
BaiY, JiangC, WangQ, WangT. Multi-shape-memory property study of novel poly(ε-caprolactone)/ethyl cellulose polymer networks.Macromolecular Chemistry and Physics, 2013, 214(21): 2465–2472 https://doi.org/10.1002/macp.201300389
80
LeeK M, KnightP T, ChungT, MatherP T. Polycaprolactone-POSS chemical/physical double networks.Macromolecules, 2008, 41(13): 4730–4738 https://doi.org/10.1021/ma800586b
81
HongS J, YuW R, YoukJ H. Two-way shape memory behavior of shape memory polyurethanes with a bias load.Smart Materials and Structures, 2010, 19(3): 035022 https://doi.org/10.1088/0964-1726/19/3/035022
82
BakerR M, HendersonJ H, MatherP T. Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation.Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(38): 4916 https://doi.org/10.1039/c3tb20810a
83
HuangM, DongX, WangL, ZhaoJ, LiuG, WangD. Two-way shape memory property and its structural origin of cross-linked poly(ε-caprolactone).RSC Advances, 2014, 4(98): 55483–55494 https://doi.org/10.1039/C4RA09385B
84
PandiniS, BaldiF, PaderniK, MessoriM, ToselliM, PilatiF, GianoncelliA, BrisottoM, BontempiE, RiccòT. One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(ε-caprolactone).Polymer, 2013, 54(16): 4253–4265 https://doi.org/10.1016/j.polymer.2013.06.016
RaquezJ M, VanderstappenS, MeyerF, VergeP, AlexandreM, ThomassinJ M, JeromeC, DuboisP. Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions.Chemistry, 2011, 17(36): 10135–10143 https://doi.org/10.1002/chem.201100496
87
BaiY, ZhangX, WangQ, WangT. A tough shape memory polymer with triple-shape memory and two-way shape memory properties.Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(13): 4771–4778 https://doi.org/10.1039/c3ta15117d
88
ZotzmannJ, BehlM, HofmannD, LendleinA. Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments.Advanced Materials, 2010, 22(31): 3424–3429 https://doi.org/10.1002/adma.200904202
WuY, HuJ, HanJ, ZhuY, HuangH, LiJ, TangB. Two-way shape memory polymer with “switch-spring” composition by interpenetrating polymer network.Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(44): 18816–18822 https://doi.org/10.1039/C4TA03640A
91
GongT, ZhaoK, WangW, ChenH, WangL, ZhouS. Thermally activated reversible shape switch of polymer particles.Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(39): 6855–6866 https://doi.org/10.1039/C4TB01155D
92
GautrotJ E, ZhuX X. Biodegradable polymers based on bile acids and potential biomedical applications.Journal of Biomaterials Science. Polymer Edition, 2006, 17(10): 1123–1139 https://doi.org/10.1163/156856206778530713
93
GautrotJ E, ZhuX X. Main-chain bile acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization.Angewandte Chemie International Edition, 2006, 45(41): 6872–6874 https://doi.org/10.1002/anie.200602096
94
GautrotJ E, ZhuX X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks.Journal of Materials Chemistry, 2009, 19(32): 5705 https://doi.org/10.1039/b821340b
95
JiaY G, ZhuX X. Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants.Chemistry of Materials, 2015, 27(1): 387–393 https://doi.org/10.1021/cm5041584
96
GautrotJ E, ZhuX X. High molecular weight bile acid and ricinoleic acid-based copolyesters via entropy-driven ring-opening metathesis polymerisation.Chemical Communications, 2008, (14): 1674–1676 https://doi.org/10.1039/b719021b
97
GautrotJ E, ZhuX X. Shape memory polymers based on naturally-occurring bile acids.Macromolecules, 2009, 42(19): 7324–7331 https://doi.org/10.1021/ma901090r
98
Thérien-AubinH, GautrotJ E, ShaoY, ZhangJ, ZhuX X. Shape memory properties of main chain bile acids polymers.Polymer, 2010, 51(1): 22–25 https://doi.org/10.1016/j.polymer.2009.11.027
99
StrandmanS, TsaiI H, LortieR, ZhuX X. Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B.Polymer Chemistry, 2013, 4(16): 4312–4316 https://doi.org/10.1039/c3py00651d
100
ShaoY, LavigueurC, ZhuX X. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups.Macromolecules, 2012, 45(4): 1924–1930 https://doi.org/10.1021/ma202506b
ChenM C, TsaiH W, ChangY, LaiW Y, MiF L, LiuC T, WongH S, SungH W. Rapidly self-expandable polymeric stents with a shape-memory property.Biomacromolecules, 2007, 8(9): 2774–2780 https://doi.org/10.1021/bm7004615
106
SmallW L V, WilsonT S, BenettW J, LogeJ M, MaitlandD J. Laser-activated shape memory polymer intravascular thrombectomy device.Optics Express, 2005, 13(20): 8204–8213 https://doi.org/10.1364/OPEX.13.008204
107
BellinI, KelchS, LangerR, LendleinA. Polymeric triple-shape materials.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48): 18043–18047 https://doi.org/10.1073/pnas.0608586103
108
GongT, ZhaoK, LiuX, LuL, LiuD, ZhouS. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization.Small, 2016, 12(41): 5769–5778 https://doi.org/10.1002/smll.201601503
109
KabirM H, HazamaT, WatanabeY, GongJ, MuraseK, SunadaT, FurukawaH. Smart hydrogel with shape memory for biomedical applications.Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6): 3134–3138 https://doi.org/10.1016/j.jtice.2014.09.035