Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2017, Vol. 11 Issue (3): 483-496   https://doi.org/10.1007/s11705-017-1653-z
  本期目录
Materials sustainability for environment: Red-mud treatment
Brajendra Mishra1(), Sumedh Gostu2
1. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA
2. Department of Material Science and Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA
 全文: PDF(409 KB)   HTML
Abstract

Bayer’s process revolutionized the extraction of aluminum from the bauxite ores. However, the hydrothermal extraction of alumina is associated with the generation of a byproduct, red-mud consisting of undissolved solids composed of iron oxides, sodium alumino silicates, titania, silica and rare earth elements. The accumulation of red-mud (or bauxite residue) in the world is 30 billion metric tons produced at a rate of 125 million tons per annum (2013). Utilization of red-mud for constructional purposes, wastewater treatment, metallurgical products, and pigments are listed. Metallurgical processing efforts of red-mud to generate various value added products such as pig iron, direct reduced iron slag wool, magnetite, titania, iron carbides are presented in the article.

Key wordsred-mud processing    waste management    sustainability    valorization
收稿日期: 2016-10-19      出版日期: 2017-08-23
Corresponding Author(s): Brajendra Mishra   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2017, 11(3): 483-496.
Brajendra Mishra, Sumedh Gostu. Materials sustainability for environment: Red-mud treatment. Front. Chem. Sci. Eng., 2017, 11(3): 483-496.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1653-z
https://academic.hep.com.cn/fcse/CN/Y2017/V11/I3/483
Source SiO2 TiO2 Al2O3 Fe2O3 CaO MgO H2O (combined) Total
France 0.8 2.8 58.6 26.2 10.9 99.30
France 0.8 3.3 76.4 4.8 14.3 99.8
France 0.29 0.8 60.6 26 10.4 98.09
France 13.3 2.4 63.7 5.5 14.3 99.2
Romania 1.49 3.12 59.66 23.66 11.81 99.74
Romania 0.8 2.8 65.5 21.3 9.96 100.36
Yugoslavia 0.89 51.85 26.82 19.97 99.54
Italy 2.79 1.27 57.6 26.55 11.71 99.92
Italy 7.91 58.85 18.62 0.30 0.37 13.27 99.32
US, Alabama 2.90 3.40 58.21 3.60 31.89 100
US, Arkansas 2 3.5 62.25 1.66 30.31 99.52
US, Arkansas 10.13 55.09 6.08 28.99 100.29
US, Georgia 0.62 1.05 64.91 0.28 33 99.86
British Guiana 2.73 0.1 64.38 0.5 32.29 100
British Guiana 1 1.1 70.90 0.8 26.30 100.10
Tab.1  
Fig.1  
Plant, location (country) Fe2O3 Al2O3 TiO2 SiO2 Na2O CaO LOI
Alcoa of Australia (Pinjarra, Australia) 36.2 17.1 3.9 2.8 1.6 3.9 10.4
Alcan, Arvida (Quebec, Canada) 27.4 28.4 9.8 14.3 8.8 1.3 9.9
Hungalu (Ajka, Hungary) 42.1 14.8 5.2 13.5 8.9 6.1 8.2
Alcan Jamaica (Kirkvine, Jamaica) 49.4 13.2 7.3 3.0 9.6 5.7 7.2
Kaiser (Gramercy, Louisiana, USA) 51.5 15.0 6.7 1.7 1.0 7.0 9.3
Alcoa alumino (Pocos, de Caldes, Brazil) 29.6 21.9 4.4 17.5 8.3 2.9 11.5
Indian plants
Hindalco (a) causticised
(Renukoot) (b) uncausticised
28.1
33.1
21.9
18.2
15.6
19.6
7.5
8.8
4.5
5.8
10.2
2.7
12.2
8.9
Nalco (a) 1995
(Damanjodi) (b) 1991
54.8
68.5
14.8
12.5
3.7
2.8
6.4
3.0
4.8
2.5
2.5
0.1
9.5
10.2
Balco (Korba) causticised 27.9 19.2 16.4 7.3 3.3 11.8 12.6
Indal (Muri) 24.5 24.3 18.0 6.2 5.3 ? ?
Indal (Belgaum) 44.5 19.2 13.5 7.0 4.0 0.8 10.0
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
  
1 F Habbashi. Textbook of Hydrometallurgy. Métallurgie Extractive Québec, 1999
2 J Edward, F Frary, Z Jefferies. Aluminum and Its Production. Columbus: McGraw-Hill Book Company, Inc, 1930
3 Information from Company Websites of USGS. Alcoa. 2017
4 Bauxite Residue Management: Best Practice. World aluminum, European aluminum association, April 2013
5 A R Burkin. Production of Aluminum and Alumina. Society of Chemical Industry. Hoboken: John Wiley and Sons, 1987
6 P M Prasad, M Singh. Problems in the disposal and utilization of red muds. Banaras Metallurgist, 1997, 14-15: 127–140
7 A K Staley. An investigation into the Pyrometallurgical and electrometallurgical extraction of iron from red mud generated in the processing of bauxite ores. Dissertation for the Doctoral Degree. Colorado: Colorado School of Mines, 2002
8 S Samal, A Ray, A Bandopadhyay. Proposal for resources, utilization and processes of red mud in India: A review. International Journal of Mineral Processing, 2013, 118: 43–55
https://doi.org/10.1016/j.minpro.2012.11.001
9 Y Pontikes, G Angelpoulos. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling, 2013, 73: 53–63
https://doi.org/10.1016/j.resconrec.2013.01.005
10 M Singh, S N Upadhyay, P M Prasad. Preparation of iron rich cements using red mud. Cement and Concrete Research, 1997, 27(7): 1037–1046
https://doi.org/10.1016/S0008-8846(97)00101-4
11 C R Mishra, D Yadav, P S Sharma, M M Alli. Production of ordinary portland cement (OPC) from NALCO red mud. TMS (The Minerals, Metals and Materials Society). 2011,
12 X Liu, N Zhang. Utilization of red mud in cement production: A review. Waste Management & Research, 2010, 29(10): 1053–1063
https://doi.org/10.1177/0734242X11407653
13 Q Liu, R Xin, C Li, C Xu, J Yang. Application of red mud as a basic catalyst for biodiesel production. Journal of Environmental Sciences (China), 2013, 25(4): 823–829
https://doi.org/10.1016/S1001-0742(12)60067-9
14 W Liang, S J Couperthwaite, G Kaur, C Yan, D W Johnstone, G J Millar. Effect of strong acids on red mud structural and fluoride adsorption properties. Journal of Colloid and Interface Science, 2014, 423: 158–165
https://doi.org/10.1016/j.jcis.2014.02.019
15 Z Liu, H Li. Metallurgical process for valuable elements recovery from red mud: A review. Hydrometallurgy, 2015, 155: 29–43
https://doi.org/10.1016/j.hydromet.2015.03.018
16 K Hammond, B Mishra, D Apelian, B Blanpain. CR3 Communication: Red mud — a resource or a waste? Journal of the Minerals Metals & Materials Society, 2013, 65(3): 340–341
https://doi.org/10.1007/s11837-013-0560-0
17 W Liu, J Yang, B Xiao. Review on treatment and utilization of bauxite residues in China. International Journal of Mineral Processing, 2009, 93(3-4): 220–231
https://doi.org/10.1016/j.minpro.2009.08.005
18 W Liu, S Sun, L Zhang, S Jahanshahi, J Yang. Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe. Minerals Engineering, 2012, 39: 213–218
https://doi.org/10.1016/j.mineng.2012.05.021
19 L Zhong, Y Zhang, Z Yi. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2-3): 1629–1634
https://doi.org/10.1016/j.jhazmat.2009.08.036
20 H Li, J Hui, C Wang, W Bao, Z Sun. Removal of sodium (Na2O) from alumina extracted fly ash by a mild hydrothermal process. Hydrometallurgy, 2015, 153: 1–5
https://doi.org/10.1016/j.hydromet.2015.02.001
21 P Vachon, R D Tyagi, J C Auclair, K J Wilkinson. Chemical and biological leaching of aluminum from red mud. Environmental Science & Technology, 1994, 28(1): 26–30
https://doi.org/10.1021/es00050a005
22 W J Bruckard, C M Calle, R H Davidson, A M Glenn, S Jahanshahi, M A Somerville, G J Sparrow, L Zhang. Smelting of bauxite residue to form a soluble sodium aluminum silicate phase to recover alumina and soda. Mineral Processing and Extractive Metallurgy Review, 2010, 119(1): 18–26
https://doi.org/10.1179/037195509X12518785461760
23 X Li, W Xiao, W Liu, G Liu, Z Peng, Q Zhou, T Qi. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of Nonferrous Metallurgical Society, 2009, 19(5): 1342–1347
https://doi.org/10.1016/S1003-6326(08)60447-1
24 Q S Zhou, K S Fan, X B Li, Z H Peng, G H Liu. Alumina recovery from red mud with high iron by sintering process . Journal of Central South University Science and Technology, 2008, 39(1): 92–97 (in Chinese)
25 N V Raspopov, V P Korneev, V Averin, Y A Lainer, D V Zinoneev, V G Dyubanov. Reduction of iron oxides during the Pyrometallurgical processing or red mud. Russian Metallurgy (Metally), 2013, 1(1): 33–37
https://doi.org/10.1134/S0036029513010114
26 G Li, M Liu, M Rao, T Jiang, J Zhuang, Y Zhang. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780
https://doi.org/10.1016/j.jhazmat.2014.09.005
27 E Jamieson, A Jones, D Cooling, N Stockton. Magnetic separation of red sand to produce value. Minerals Engineering, 2006, 19(15): 1603–1605
https://doi.org/10.1016/j.mineng.2006.08.002
28 D Zhu, T Jun, J Chun, P Zhen. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. Journal of Iron and Steel Research International, 2012, 19(8): 1–5
29 W Liu, J Yang, B Xiao. Application of Bayer red mud for iron recovery and building material production from aluminosilicate residues. Journal of Hazardous Materials, 2009, 161(1): 474–478
https://doi.org/10.1016/j.jhazmat.2008.03.122
30 L Piga, F Pochetti, L Stoppa. Recovery of metals from red mud generated during alumina production. JOM, 1993, 45(11): 54–59
https://doi.org/10.1007/BF03222490
31 W A Stickney, M O Butler, J E Mauser, O C Fursman. Utilization of red mud residues from alumina production. Washington: U.S. Department of Interior, Bureau of Mines, DC, 1970
32 R Kumar, J P Srivastava. Premchand. Utilization of iron values of red mud for metallurgical applications. Environmental and Waste Management, 1998, 108–119
33 K Jayasankar, P K Ray, A K Chaubey, A Padhi, B K Satapathy, P S Mukherjee. Production of pig iron from red mud waste fines using thermal plasma technology. International Journal of Minerals Metallurgy and Materials, 2012, 19(8): 679–684
https://doi.org/10.1007/s12613-012-0613-3
34 C Laguna, F González, C García-Balboa, A Ballester, M L Blázquez, J A Muñoz. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Minerals Engineering, 2011, 24(1): 10–18
https://doi.org/10.1016/j.mineng.2010.08.026
35 L Zhong, Y Zhang, Y Zhang. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2-3): 1629–1634
https://doi.org/10.1016/j.jhazmat.2009.08.036
36 Y Guo, J Guo, H Xu, K Zhao, X Shi. Nuggests production by direct reduction of high iron red mud. Journal of Iron and Steel research, International, 2013, 20(5): 24–27
37 M Samouhos, M Taxiarchou, P Tsakiridis, K Potiriadis. Greek red mud residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. Journal of Hazardous Materials, 2013, 254-255: 193–205
https://doi.org/10.1016/j.jhazmat.2013.03.059
38 G Li, M Liu, M Rao, T Jiang, J Zhuang, Y Zhang. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780
https://doi.org/10.1016/j.jhazmat.2014.09.005
39 O A Teplov, Y U Lainer. Rate of reduction of the iron oxides in red mud by hydrogen and converted gas. Russian Metallurgy (Metally), 2013, 1: 32–40
40 R Caupain. Low-temperature gas-phase carbidization of iron-bearing constituents in red mud. Dissertation for the Master Degree. Colorado: Colorado School of Mines, 2004
41 K H Strausta. DD Patent , 120185-A, 1976-06-05
42 A W Vereinigte. FR Patent, 2.117.930-A, 1971-12-07
43 J Wang, P Zhao. Method of dealkalizing red mud and recovering aluminum and iron. Google patents, 2013
44 S Agatzini-Leonardou, P Oustadakis, P E Tsakiridis, C Markopoulos. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal of Hazardous Materials, 2008, 157(2-3): 579–586
https://doi.org/10.1016/j.jhazmat.2008.01.054
45 E Erçağ, R Apak. Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1997, 70(3): 241–246
https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<241::AID-JCTB769>3.0.CO;2-X
46 S Mehta, S Patel. Recovery of titania from the bauxite sludge. Journal of the American Chemical Society, 1951, 73(1): 226–227
https://doi.org/10.1021/ja01145a076
47 Q Xiang, X Liang, M Schlesinger, J Watson. Low-temperature reduction of ferric iron in red mud. TMS (The Minerals, Metals and Materials Society). 2001
48 Y Liu, B Zhao, Y Tang, P Wan, Y Chen, Z Lv. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochimica Acta, 2014, 588: 11–15
https://doi.org/10.1016/j.tca.2014.04.027
49 K Binnemans, P T Jones, B Blanpain, T P Gerven, Y Pontikes. Towards zero waste valorization of rare earth-containing-industrial process residues: A critical review. Journal of Cleaner Production, 2015, 99: 17–38
https://doi.org/10.1016/j.jclepro.2015.02.089
50 A S Wagh, W R Pinnock. Occurrence of scandium and rare earth elements in Jamaican Bauxite waste. Economic Geology and the Bulletin of the Society of Economic Geologists, 1987, 82(3): 757–761
https://doi.org/10.2113/gsecongeo.82.3.757
51 C R Borra, Y Pontikes, K Binnemans, T V Gerven. Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76: 20–27
https://doi.org/10.1016/j.mineng.2015.01.005
52 W Wang, C Y Cheng. Separation and purification of scandium by solvent extraction and related technologies: A review. Journal of Chemistry and Biotechnology, 2011, 86(10): 1237–1246
https://doi.org/10.1002/jctb.2655
53 S P Yatsenko, I N Pyagai. Red mud pulp carbonization with scandium extraction during alumina production. Theoretical Foundations of Chemical Engineering, 2010, 44(4): 563–568
https://doi.org/10.1134/S0040579510040366
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed