Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2017, Vol. 11 Issue (3): 369-378   https://doi.org/10.1007/s11705-017-1662-y
  本期目录
Alkali-thermal gasification and hydrogen generation potential of biomass
Alexander B. Koven1, Shitang S. Tong2, Ramin R. Farnood1, Charles Q. Jia1()
1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S-3E5, Canada
2. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
 全文: PDF(267 KB)   HTML
Abstract

Generating hydrogen gas from biomass is one approach to lowering dependencies on fossil fuels for energy and chemical feedstock, as well as reducing greenhouse gas emissions. Using both equilibrium simulations and batch experiments with NaOH as a model alkaline, this study established the technical feasibility of converting various biomasses (e.g., glucose, cellulose, xylan and lignin) into H2-rich gas via catalyst-free, alkali-thermal gasification at moderate temperatures (as low as 300 °C). This process could produce more H2 with less carbon-containing gases in the product than other comparable methods. It was shown that alkali-thermal gasification followsCx HyOz+ 2xNaOH+(xz)H2 O= (2x+y/2z )H2+x Na2 CO 3, with carbonate being the solid product which is different from the one suggested in the literature. Moreover, the concept of hydrogen generation potential (H2-GP)—the maximum amount of H2 that a biomass can yield, was introduced. For a given biomass CxHyOz, the H2-GP would be moles of H2. It was demonstrated experimentally that the H2- GP was achievable by adjusting the amounts of H2O and NaOH, temperature and pressure.

Key wordshydrogen generation potential    biomass    lignocellulose    alkali-thermal gasification    sodium hydroxide
收稿日期: 2016-11-23      出版日期: 2017-08-23
Corresponding Author(s): Charles Q. Jia   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2017, 11(3): 369-378.
Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass. Front. Chem. Sci. Eng., 2017, 11(3): 369-378.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1662-y
https://academic.hep.com.cn/fcse/CN/Y2017/V11/I3/369
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Carbon content in products %
Total carbon in gasification product (A) 15±2
Total inorganic carbon in ashed gasification product (B) 10±1
Total organic carbon (A?B) 5±2
Tab.1  
Fig.6  
Fig.7  
Fig.8  
1 Ishida M, Otsuka  K, Takenaka S ,  Yamanaka I . One-step production of CO- and CO2-free hydrogen from biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(3): 281–284
https://doi.org/10.1002/jctb.1188
2 EG&G Technical Services. I. In: Fuel Processing Techniques, Fuel Cell Handbook 7th ed. Morgantown: U.S. Department of Energy, 2004, 257–259
3 Balat H, Kırtay  E. Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy, 2010, 35(14): 7416–7426
https://doi.org/10.1016/j.ijhydene.2010.04.137
4 Kirtay E. Recent advances in production of hydrogen from biomass. Energy Conversion and Management, 2011, 52(4): 1778–1789
https://doi.org/10.1016/j.enconman.2010.11.010
5 Basu P, Mettanant  V. Biomass gasification in supercritical water—A review. International Journal of Chemical Reactor Engineering, 2009, 7(1): 1919
https://doi.org/10.2202/1542-6580.1919
6 Elliott D C. In hydrothermal processing. In: Brown R C, ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. West Sussex: Wiley, 2011, 200–231
7 Schmieder H, Abeln  J, Boukis N ,  Dinjus E ,  Kruse A ,  Kluth M ,  Petrich G ,  Sadri E ,  Schacht M . Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids, 2000, 17(2): 145–153
https://doi.org/10.1016/S0896-8446(99)00051-0
8 Muangrat R, Onwudili  J A, Williams  P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. International Journal of Hydrogen Energy, 2010, 35(14): 7405–7415
https://doi.org/10.1016/j.ijhydene.2010.04.179
9 Azadi P, Afif  E, Azadi F ,  Farnood R . Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chemistry, 2012, 6(6): 1766–1777
https://doi.org/10.1039/c2gc16378k
10 Gökkaya D S ,  Saglam M ,  Yuksel M ,  Ballice L . Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass and Bioenergy, 2016, 1: 26–36
https://doi.org/10.1016/j.biombioe.2016.04.013
11 Kruse A. Supercritical water gasification. Biofuels, Bioproducts & Biorefining, 2008, 2(5): 415–437
https://doi.org/10.1002/bbb.93
12 Ishida M, Takenaka  S, Yamanaka I ,  Otsuka K . Production of COx-free hydrogen from biomass and NaOH mixture: Effect of catalysts. Energy & Fuels, 2006, 20(2): 748–753
https://doi.org/10.1021/ef050282u
13 Nzihou A, Stanmore  B, Sharrock P . A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 2013, 58(1): 305–317
https://doi.org/10.1016/j.energy.2013.05.057
14 Tchapda A H, Pisupati  S V. A review of thermal co-conversion of coal and biomass/waste. Energies, 2014, 7(3): 1098–1148
https://doi.org/10.3390/en7031098
15 Zhang Z, Pang  S, Levi T . Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renewable Energy, 2017, 1: 356–363
https://doi.org/10.1016/j.renene.2016.08.070
16 Liu X, Xiong  B, Huang X ,  Ding H, Zheng  Y, Liu Z ,  Zheng C . Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel, 2017, 88(15): 474–482
17 Guan G, Kaewpanha  M, Hao X ,  Abudula A . Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2016, 58: 450–461
https://doi.org/10.1016/j.rser.2015.12.316
18 Yan Q, Guo  L, Lu Y . Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management, 2006, 47(11-12): 1515–1528
https://doi.org/10.1016/j.enconman.2005.08.004
19 Smith W R, Missen  R W. In Chemical Thermodynamics and Equilibrium Conditions; Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Hoboken: John Wiley & Sons, 1982, 40–60
20 Lee I, Kim  M, Ihm S . Gasification of glucose in supercritical water. Industrial & Engineering Chemistry Research, 2002, 41(5): 1182–1188
https://doi.org/10.1021/ie010066i
21 Phongkanpai V, Benjakul  S, Tanaka M . Effect of pH on antiocidative activity and other characteristics of caramelization products. Journal of Food Biochemistry, 2006, 30(2): 174–186
https://doi.org/10.1111/j.1745-4514.2006.00053.x
22 Onwudili J A, Williams  P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International Journal of Hydrogen Energy, 2009, 34(14): 5645–5656
https://doi.org/10.1016/j.ijhydene.2009.05.082
23 Lewis R. In Sodium Hydroxide; Hawley’s Condensed Chemical Dictionary. 15th ed. Hoboken: John Wiley & Sons, 2007, 1146
24 Kamo T, Takaoka  K, Otomo J ,  Takahashi H . Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel, 2006, 85(7-8): 1052–1059
https://doi.org/10.1016/j.fuel.2005.10.002
25 Araki K, Yamaguchi  Y, Tsutsumi A ,  Fushimi C . Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research, 2003, 42(17): 3929–3936
https://doi.org/10.1021/ie0300575
26 Azadi P, Syed  K M, Farnood  R. Catalytic gasification of biomass model compound in near-critical water. Applied Catalyst A, 2009, 358(1): 65–72
https://doi.org/10.1016/j.apcata.2009.01.041
27 Widyawati M, Church  T L, Florin  N H, Harris  A T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 2011, 36(8): 4800–4813
https://doi.org/10.1016/j.ijhydene.2010.11.103
28 Wen G, Xu  Y, Xu Z ,  Tian Z. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications, 2010, 11(6): 522–526
https://doi.org/10.1016/j.catcom.2009.12.008
29 Zheng C, Lee  D H, Yang  H, Chen H ,  Yan R, Liang  D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 2005, 20: 388–393
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed