1. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China 2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China 3. Laboratory of Inorganic Materials Chemistry, Univernisity of Namur, Namur B-5000, Belgium 4. Clare Hall, University of Cambridge, Cambridge, CB2 1EW, UK
This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.
Fu M F, Li C T, Lu P, Qu L, Zhang M Y, Zhou Y, Yu M G, Fang Y. A review on selective catalytic reduction of NOx by supported catalysts at 100‒300 °C-catalysts, mechanism, kinetics. Catalysis Science & Technology, 2014, 4(1): 14–25 https://doi.org/10.1039/C3CY00414G
2
Xiong S C, Xiao X, Liao Y, Dang H, Shan W P, Yang S J. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Industrial & Engineering Chemistry Research, 2015, 54(44): 11011–11023 https://doi.org/10.1021/acs.iecr.5b03044
3
Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catalysis Today, 1996, 29(1-4): 143–148 https://doi.org/10.1016/0920-5861(95)00250-2
4
Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts. Journal of Catalysis, 1999, 187(2): 419–435 https://doi.org/10.1006/jcat.1999.2603
5
Buscaa G, Liettib L, Ramisa G, Bertic F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36 https://doi.org/10.1016/S0926-3373(98)00040-X
Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3. Applied Catalysis B: Environmental, 2007, 73(1-2): 60–64 https://doi.org/10.1016/j.apcatb.2006.06.003
8
Tang X L, Hao J M, Yi H H, Li J H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411 https://doi.org/10.1016/j.cattod.2007.06.013
9
Went G T, Leu L J, Rosin R R, Bell A T. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3. Journal of Catalysis, 1992, 134(2): 492–505 https://doi.org/10.1016/0021-9517(92)90337-H
10
Went G T, Leu L J, Bell A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5. Journal of Catalysis, 1992, 134(2): 479–491 https://doi.org/10.1016/0021-9517(92)90336-G
11
Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10(4): 299–311 https://doi.org/10.1016/S0926-3373(96)00032-X
12
Chen J P, Yang R T. Selective catalytic reduction of NO with NH3 on SO42‒/TiO2 superacid catalyst. Journal of Catalysis, 1993, 139(1): 277–288 https://doi.org/10.1006/jcat.1993.1023
13
Saur O, Bensitel M, Mohammed S, Lavalley J C, Tripp C P, Morrow B A. The structure and stability of sulfated alumina and titania. Journal of Catalysis, 1986, 99(1): 104–110 https://doi.org/10.1016/0021-9517(86)90203-4
14
Wallin M, Forser S, Thormählen P, Skoglungh M. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & Engineering Chemistry Research, 2004, 43(24): 7723–7731 https://doi.org/10.1021/ie049695t
15
Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218 https://doi.org/10.1006/jcat.1997.1788
16
Kim Y J, Kwon H J, Nam I, Choung J W, Kil J K, Kim H, Cha M, Yeo G K. High deNOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 2010, 151(3): 244–250 https://doi.org/10.1016/j.cattod.2010.02.074
17
Wu Z B, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2008, 79(4): 347–355 https://doi.org/10.1016/j.apcatb.2007.09.039
18
Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials, 2009, 162(2-3): 1249–1254 https://doi.org/10.1016/j.jhazmat.2008.06.013
19
Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 2012, 288: 74–83 https://doi.org/10.1016/j.jcat.2012.01.003
20
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuang Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563 https://doi.org/10.1039/C6CS00135A
21
Huang J H, Tong Z Q, Huang Y, Zhang J F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 2008, 78(3): 309–314 https://doi.org/10.1016/j.apcatb.2007.09.031
22
Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1): 160–168 https://doi.org/10.1016/j.apcatb.2009.12.023
23
Shi Y N, Chen S, Sun H, Shu Y, Quan X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous Mn/TiO2. Catalysis Communications, 2013, 42: 10–13 https://doi.org/10.1016/j.catcom.2013.07.036
24
Fang C, Shi L Y, Li H R, Huang L, Zhang J P, Zhang D S. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3. RSC Advances, 2016, 6(82): 78727–78736 https://doi.org/10.1039/C6RA18339E
25
Zhang J F, Huang Y, Chen X. Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica. Journal of Natural Gas Chemistry, 2008, 17(3): 273–277 https://doi.org/10.1016/S1003-9953(08)60063-8
26
Schill L, Putluru S, Fehrmann R, Jensen A D. Low-temperature NH3-SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catalysis Letters, 2014, 144(3): 395–402 https://doi.org/10.1007/s10562-013-1176-2
27
Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: Promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 5(20): 9821– 9829 https://doi.org/10.1039/c3nr03150k
28
Catillon-Mucherie S, Ammari F, Krafft J, Lauron-Pernot H, Touroude R, Louis C. Preparation of coimpregnated Cu-Zn/SiO2 catalysts: Influence of the drying step on metallic particle size and on Cu0‒ZnII interactions. Journal of Physical Chemistry C, 2007, 111(31): 11619–11626 https://doi.org/10.1021/jp0718956
29
Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160 https://doi.org/10.4236/wjnse.2012.23020
30
Blin J, Léonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 2003, 42(25): 2872–2875 https://doi.org/10.1002/anie.200250816
31
Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65 https://doi.org/10.1002/adfm.200390007
32
Dapsens P Y, Hakim S H, Su B L, Shanks B H. Direct observation of macropore self-formation in hierarchically structured metal oxides. Chemical Communications, 2010, 46(47): 8980–8982 https://doi.org/10.1039/c0cc02684k
33
Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569 https://doi.org/10.1039/b315018f
34
Pappas D K, Boningari T, Boolcchand P, Smirniotis P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. Journal of Catalysis, 2016, 334: 1–13 https://doi.org/10.1016/j.jcat.2015.11.013
35
Smirniotis P G, Sreekanth P M, Peña D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443 https://doi.org/10.1021/ie060484t
36
Choi H J, Kim S S, Hong S C. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation. Journal of the Air & Waste Management Association, 2012, 62(3): 362–369 https://doi.org/10.1080/10473289.2011.653515
37
Kang M, Yeon T H, Park E D, Yie J E, Kim J M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catalysis Letters, 2006, 106(1): 77–80 https://doi.org/10.1007/s10562-005-9194-3
38
Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 2015, 325: 145–155 https://doi.org/10.1016/j.jcat.2015.03.002