Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (3): 409-416   https://doi.org/10.1007/s11705-017-1689-0
  本期目录
Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution
Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao()
University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(412 KB)   HTML
Abstract

A low-cost and high-activity catalyst for oxygen evolution reaction (OER) is the key to the water splitting technology for hydrogen generation. Here we report the use of three solvents, DMF, ethanol and glycol, in the solvothermal synthesis of three nano-catalysts, Co3(VO4)2-I, Co3(VO4)2-II, and Co3(VO4)2-III, respectively. Transmission electron microscope shows Co3(VO4)2-I, II, and III exist as ultrafine nanosheets, ultrathin nanofilms, and ultrafine nanosheet-comprised microspheres, respectively. These Co3(VO4)2 catalysts exhibit OER electrocatalysis, among which the Co3(VO4)2-II shows the lowest onset overpotential of 310 mV and only requires a small overpotential of 330 mV to drive current density of 10 mA/cm2. Due to their high surface free energy, the ultrathin nanofilms of Co3(VO4)2-II exhibits a good immobilization effect with the high electrocatalytic activity for OER.

Key wordsCo3(VO4)2    oxygen evolution reaction    electrocatalyst    water splitting
收稿日期: 2017-07-09      出版日期: 2018-09-18
Corresponding Author(s): Yuqing Miao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 409-416.
Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1689-0
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I3/409
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Herrera G, Jiménez-Mier J, Wilks R G, Moewes A, Yang W, Denlinger J. Fast electron dynamics in vanadates measured by resonant inelastic x-ray scattering. Materials Letters, 2013, 107: 144–146
https://doi.org/10.1016/j.matlet.2013.06.005
2 Liang Y, Liu P, Li H B, Yang G W. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm, 2012, 14(9): 3291–3296
https://doi.org/10.1039/c2ce06347f
3 Zhang S, Hou M, Hou L, Lu M. Synthesis and electrochemical performance of cable-like copper vanadates/polypyrrole nanobelts as anode materials for lithium-ion batteries. Chemical Physics Letters, 2016, 658: 203–206
https://doi.org/10.1016/j.cplett.2016.06.046
4 Wang N, He Z, Cui M, Guo W, Zhang S, Yang M, Tang Y. Syntheses, structure and magnetic properties of two vanadate garnets Ca5M4V6O24 (M= Co, Ni). Journal of Solid State Chemistry, 2015, 228: 245–249
https://doi.org/10.1016/j.jssc.2015.05.004
5 Liu Y, Dai H, Deng J, Zhang L, Au C T. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale, 2012, 4(7): 2317–2325
https://doi.org/10.1039/c2nr12046a
6 Abdi F F, Han L, Smets A H M, Zeman M, Dam B, Van De Krol R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature Communications, 2013, 4: 2195
https://doi.org/10.1038/ncomms3195
7 Shi X, Choi I Y, Zhang K, Kwon J, Kim D Y, Lee J K, Oh S H, Kim J K, Park J H. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5: 4775
https://doi.org/10.1038/ncomms5775
8 Vu T A, Dao C D, Hoang T T T, Dang P T, Tran H T K, Nguyen K T, Le G H, Nguyen T V, Lee G D. Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities. Materials Letters, 2014, 123: 176–180
https://doi.org/10.1016/j.matlet.2014.03.004
9 Yin K, Liu S, Cai Q, Gao A, Lu S, Shao M. The enhanced ammonia gas-sensing activity of gamma ray irradiated indium vanadate nanoribbons. Journal of Materials Science Materials in Electronics, 2014, 25(1): 419–422
https://doi.org/10.1007/s10854-013-1604-5
10 Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P. A comparative insight of potassium vanadates as positive electrode materials for Li batteries: Influence of the long-range and local structure. Inorganic Chemistry, 2014, 53(3): 1764–1772
https://doi.org/10.1021/ic402897d
11 Nithya V D, Pandi K, Lee Y S, Selvan R K. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochimica Acta, 2015, 167: 97–104
https://doi.org/10.1016/j.electacta.2015.03.107
12 Zhou B, Zhao X, Liu H, Qu J, Huang C P. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1-2): 214–221
https://doi.org/10.1016/j.apcatb.2010.06.022
13 Xiao M, Miao Y, Li W, Yang Y, Liang X. Onsite deposition of self-repairing biomimetic nanostructured Ni catalysts with improved electrocatalysis toward glycerol oxidation for H2 production. Electrochimica Acta, 2015, 178: 209–216
https://doi.org/10.1016/j.electacta.2015.07.185
14 Xiao M, Miao Y, Tian Y, Yan Y. Synthesizing nanoparticles of Co-P-Se compounds as electrocatalysts for the hydrogen evolution reaction. Electrochimica Acta, 2015, 165: 206–210
https://doi.org/10.1016/j.electacta.2015.03.023
15 Xiao M, Zhang Z, Tian Y, Miao Y, Wang J. Co-Fe-Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47(3): 361–367
https://doi.org/10.1007/s10800-016-1014-5
16 Tian Y, Zhang Z, Miao Y. Co-Te-Se nano-compounds as electrocatalysts for hydrogen evolution reaction. Journal of the Electrochemical Society, 2016, 163(8): H625–H629
https://doi.org/10.1149/2.0251608jes
17 Xiao M, Liang X, Li W, Yang Y, Miao Y. Synthesis of ultrafine Pt/Pd bimetallic nanoparticles and their decoration on MWCNTs for hydrogen evolution. Journal of the Electrochemical Society, 2015, 162(6): H415–H418
https://doi.org/10.1149/2.0101507jes
18 Liang Y, Liu Q, Luo Y, Sun X, He Y, Asiri A M. Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190: 360–364
https://doi.org/10.1016/j.electacta.2015.12.153
19 Liu T, Liu Q, Asiri A M, Luo Y, Sun X. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chemical Communications, 2015, 51(93): 16683–16686
https://doi.org/10.1039/C5CC06892D
20 Liu T, Liang Y, Liu Q, Sun X, He Y, Asiri A M. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2015, 60: 92–96
https://doi.org/10.1016/j.elecom.2015.08.011
21 Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698
https://doi.org/10.1002/anie.201511447
22 Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703
https://doi.org/10.1002/adma.201600054
23 Le C. A review of non-fossil energy based hydrogen production technologies. Energy Research and Information, 2011, 3: 130–137
24 Zhou M, Ouyang R, Li Y, Miao Y. 3D microspheres organized from Ni-Mo-S nanoparticles in situ synthesized on porous Ti for hydrogen evolution electrocatalysis. Electrochimica Acta, 2017, 246: 9–16
https://doi.org/10.1016/j.electacta.2017.06.045
25 Yin Y, Tan X, Hou F, Zhao L. Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting. Frontiers of Chemical Engineering in China, 2009, 3(3): 298–304
https://doi.org/10.1007/s11705-009-0019-6
26 Gomathisankar P, Noda T, Katsumata H, Suzuki T, Kaneco S. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Frontiers of Chemical Science and Engineering, 2014, 8(2): 197–202
https://doi.org/10.1007/s11705-014-1417-y
27 Lu X F, Gu L F, Wang J W, Wu J X, Liao P Q, Li G R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017, 29(3): 1604437
https://doi.org/10.1002/adma.201604437
28 Fei G, Zhao J. Applications and key materials of the vanadium redox flow battery. Energy Research and Information, 2008, 24(1): 49–55
29 Xing M, Kong L B, Liu M C, Liu L Y, Kang L, Luo Y C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18435–18443
https://doi.org/10.1039/C4TA03776F
30 Cardenas-Morcoso D, Peiro-Franch A, Herraiz-Cardona I, Gimenez S. Chromium doped copper vanadate photoanodes for water splitting. Catalysis Today, 2017, 290: 65–72
https://doi.org/10.1016/j.cattod.2016.11.002
31 Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990–994
https://doi.org/10.1126/science.1246913
32 Tian Y, Zhou M, Meng X, Miao Y, Zhang D. Needle-like CoMoO with multi-modal porosity for pseudocapacitors. Materials Chemistry and Physics, 2017, 198: 258–265
https://doi.org/10.1016/j.matchemphys.2017.06.010
33 Yan Y, Tian Y, Hao M, Miao Y. Synthesis and characterization of cross-like Ni-Co-P microcomposites. Materials & Design, 2016, 111: 230–238
https://doi.org/10.1016/j.matdes.2016.08.094
34 Mazloom F, Masjedi-Arani M, Salavati-Niasari M. Controllable synthesis, characterization and photocatalytic studies on cadmium vanadate nanostructures. Journal of Molecular Liquids, 2016, 220: 566–572
https://doi.org/10.1016/j.molliq.2016.05.003
35 Zhou D, Zhu Z, Liu B. Solvothermal synthesis and characterization of a novel reduced graphene oxide (RGO)/BiVO4/SiO2 nanocomposites. Materials Letters, 2016, 185: 32–35
https://doi.org/10.1016/j.matlet.2016.08.098
36 Han G H, Yang S Z, Huang Y F, Yang J, Chai W C, Zhang R, Chen D L. Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1105–1116
https://doi.org/10.1016/S1003-6326(17)60129-8
37 Pei L Z, Xie Y K, Pei Y Q, Jiang Y X, Yu H Y, Cai Z Y. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue. Materials Research Bulletin, 2013, 48(7): 2557–2565
https://doi.org/10.1016/j.materresbull.2013.03.011
38 Kumar J V, Karthik R, Chen S M, Marikkani S, Elangovan A, Muthuraj V. Green synthesis of a novel flower-like cerium vanadate microstructure for electrochemical detection of tryptophan in food and biological samples. Journal of Colloid and Interface Science, 2017, 496: 78–86
https://doi.org/10.1016/j.jcis.2017.02.009
39 Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W, Cao L. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Letters, 2013, 14(2): 553–558
https://doi.org/10.1021/nl403620g
40 Bao J, Zhu X, Liu Y, Li W, Yu R. N,N-dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures. Materials Letters, 2014, 124: 97–100
https://doi.org/10.1016/j.matlet.2014.03.014
41 Zahir M H, Mohamed S A, Rahman M M, Rehman A U. Hydrothermal synthesis of triangular CeCO3OH particles and photoluminescence properties. Chinese Chemical Letters, 2017, 28(3): 663–669
https://doi.org/10.1016/j.cclet.2016.10.018
42 Xing M, Kong L B, Liu M C, Liu L Y, Kang L, Luo Y C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18435–18443
https://doi.org/10.1039/C4TA03776F
43 Esch T R, Bredow T. Bulk and surface properties of magnesium peroxide MgO2. Applied Surface Science, 2016, 389: 1202–1207
https://doi.org/10.1016/j.apsusc.2016.07.141
44 Jiang J, Zhang A, Li L, Ai L. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015, 278: 445–451
https://doi.org/10.1016/j.jpowsour.2014.12.085
45 Cheng N, Xue Y, Liu Q, Tian J, Zhang L, Asiri A M, Sun X. Cu/(Cu(OH)2-CuO) core/shell nanorods array: In-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163: 102–106
https://doi.org/10.1016/j.electacta.2015.02.099
46 Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors & Bioelectronics, 2014, 53(Supplement C): 428–439
https://doi.org/10.1016/j.bios.2013.10.008
47 Yang Z, Miao Y, Wang T, Liang X, Xiao M, Li W, Yang Y. The self-adsorption of Ni ultrathin layer on glassy carbon surface and their electrocatalysis toward glucose. Journal of the Electrochemical Society, 2014, 161(6): H375–H378
https://doi.org/10.1149/2.049406jes
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed