Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (3): 440-449   https://doi.org/10.1007/s11705-018-1700-4
  本期目录
Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction
Dong Yang1,2, Xiaoyan Zou1,2, Yuanyuan Sun1,2, Zhenwei Tong3,4, Zhongyi Jiang3,4()
1. Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
3. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
4. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 全文: PDF(504 KB)   HTML
Abstract

In recent years, much effort has been focused on the development of the photocatalysts with high performance under visible light irradiation. In this paper, three-dimensional porous La-doped SrTiO3 (LST) microspheres were prepared by a modified sol–gel method, in which the agarose gel/SrCO3 microsphere and La2O3 were employed as the template and the La resource, respectively. The as-prepared LST microspheres exhibit a porous structure with a diameter of about 10 µm and a surface pore size of about 100 nm. The La element was doped into the crystal lattice of SrTiO3 by the substitution of La3+ for Sr2+. Therefore, the absorption edge of LST samples shifts toward the visible light region, and their photocatalytic activity for the Cr(VI) reduction is enhanced under visible light. Among all LST samples, LST-0.5 (the La3+ doping content is 0.5 wt-%) exhibited the highest visible-light photocatalytic activity, which can reduce 84% Cr(VI) within 100 min. This LST materials may become a promising photocatalyst for the facile treatment of wastewater containing poisonous heavy metal ions.

Key wordsSrTiO3    La3+ doping    porous microsphere    visible-light photocatalysis    Cr(VI) reduction
收稿日期: 2017-10-18      出版日期: 2018-09-18
Corresponding Author(s): Zhongyi Jiang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 440-449.
Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1700-4
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I3/440
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Chen X B, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448NjrnN
2 Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
3 Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges. Advanced Materials, 2012, 43(10): 229–251
https://doi.org/10.1002/adma.201102752
4 Liu S Q, Yang M Q, Tang Z R, Xu Y J. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale, 2014, 6(13): 7193–7198
https://doi.org/10.1039/c4nr01227e
5 Lan Y C, Lu Y L, Ren Z F. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2(5): 1031–1045
https://doi.org/10.1016/j.nanoen.2013.04.002
6 Li J T, Cushing S K, Bright J, Meng F K, Senty T R, Zheng P, Bristow A D, Wu N Q. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis, 2013, 3(1): 47–51
https://doi.org/10.1021/cs300672f
7 Xu H, Ouyang S X, Liu L Q, Reunchan P, Umezawa N, Ye J H. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12642–12661
https://doi.org/10.1039/C4TA00941J
8 Hamad S, Hernandez N C, Aziz A, Ruiz-Salvador A R, Caleroa S, Grau-Crespo R. Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23458–23465
https://doi.org/10.1039/C5TA06982C
9 Shi J W, Guo L J. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22(6): 592–615
https://doi.org/10.1016/j.pnsc.2012.12.002
10 Kuang Q, Yang S H. Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5(9): 3683–3690
https://doi.org/10.1021/am400254n
11 Wang B, Shen S H, Guo L J. SrTiO3 single crystals enclosed with high-indexed (023) facets and (001) facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166-167: 320–326
https://doi.org/10.1016/j.apcatb.2014.11.032
12 Ouyang S, Li P, Xu H, Tong H, Liu L Q, Ye J H. Bifunctional-nanotemplate assisted synthesis of nanoporous SrTiO3 photocatalysts toward efficient degradation of organic pollutant. ACS Applied Materials & Interfaces, 2014, 6(24): 22726–22732
https://doi.org/10.1021/am506877b
13 Wang J S, Yin S, Zhang Q W, Saito F, Sato T. Mechanochemical synthesis of SrTiO3−xFx with high visible light photocatalytic activities for nitrogen monoxide destruction. Journal of Materials Chemistry, 2003, 13(9): 2348–2352
https://doi.org/10.1039/B303420H
14 Zhang Y B, Zhong L, Duan D P. Single-step hydrothermal synthesis of strontium titanate nanoparticles from crystalline anatase titanium dioxide. Ceramics International, 2015, 41(10): 13516–13524
https://doi.org/10.1016/j.ceramint.2015.07.145
15 Irie H, Maruyama Y, Hashimoto K. Ag+- and Pb2+-doped SrTiO3 photocatalysts: A correlation between band structure and photocatalytic activity. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2007, 111(4): 1847–1852
16 Zou J P, Zhang L Z, Luo S L, Leng L H, Luo X B, Zhang M J, Luo Y, Guo G C. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. International Journal of Hydrogen Energy, 2012, 37(22): 17068–17077
https://doi.org/10.1016/j.ijhydene.2012.08.133
17 Kou J H, Gao J, Li Z S, Yu H, Zhou Y, Zou Z G. Construction of visible-light-responsive SrTiO3 with enhanced CO2 adsorption ability: Highly efficient photocatalysts for artificial photosynthesis. Catalysis Letters, 2015, 145(2): 640–646
https://doi.org/10.1007/s10562-014-1415-1
18 Sukpanish P, Lertpanyapornchai B, Yokoi T, Ngamcharussrivichai C. Lanthanum-doped mesostructured strontium titanates synthesized via sol-gel combustion route using citric acid as complexing agent. Materials Chemistry and Physics, 2016, 181: 422–431
https://doi.org/10.1016/j.matchemphys.2016.06.078
19 Marshall M S J, Newell D T, Payne D J, Egdell R G, Castell M R. Atomic and electronic surface structures of dopants in oxides: STM and XPS of Nb- and La-doped SrTiO3 (001). Physical Review B: Condensed Matter and Materials Physics, 2011, 83(3): 035410
https://doi.org/10.1103/PhysRevB.83.035410
20 Wang J S, Yin S, Komats M, Zhang Q W, Saito F, Sato T. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2004, 165(1): 149–156
https://doi.org/10.1016/j.jphotochem.2004.02.022
21 Wang J S, Yin S, Komatsu M, Zhang Q W, Saito F, Sato T. Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation. Applied Catalysis B: Environmental, 2004, 52(1): 11–21
https://doi.org/10.1016/j.apcatb.2004.03.008
22 Ohno T, Tsubota T, Nakamura Y, Sayama K. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A, General, 2005, 288(1-2): 74–79
https://doi.org/10.1016/j.apcata.2005.04.035
23 Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T. Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(22): 12428–12442
https://doi.org/10.1016/j.ijhydene.2010.08.138
24 Townsend T K, Browning N D, Osterloh F E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano, 2012, 6(8): 7420–7426
https://doi.org/10.1021/nn302647u
25 Xue C, An H, Yan X Q, Li J L, Yang B L, Wei J, Yang G D. Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution. Nano Energy, 2017, 39: 513–523
https://doi.org/10.1016/j.nanoen.2017.07.030
26 Lin B, Li H, An H, Hao W B, Wei J, Dai Y Z, Ma C S, Yang G D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 542–552
https://doi.org/10.1016/j.apcatb.2017.08.071
27 Xue C, Yan X Q, An H, Li H, Wei J, Yang G D. Bonding CdS-Sn2S3 eutectic clusters on graphene nanosheets with unusually photoreaction-driven structural reconfiguration effect for excellent H2 evolution and Cr(VI) reduction. Applied Catalysis B: Environmental, 2018, 222: 157–166
https://doi.org/10.1016/j.apcatb.2017.10.008
28 Kanhere P, Chen Z. A review on visible light active perovskite-based photocatalysts. Molecules (Basel, Switzerland), 2014, 19(12): 19995–20022
https://doi.org/10.3390/molecules191219995
29 Schultz A M, Brown T D, Ohodnicki P R. Optical and chemi-resistive sensing in extreme environments: La-doped SrTiO3 films for hydrogen sensing at high temperatures. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 119(11): 6211–6220
30 Miyauchi M, Takashio M, Tobimatsu H. Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir, 2004, 20(1): 232–236
https://doi.org/10.1021/la0353125
31 Lin B, Yang G D, Yang B L, Zhao Y X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 198(3): 276–285
https://doi.org/10.1016/j.apcatb.2016.05.069
32 Lin B, An H, Yan X Q, Zhang T X, Wei J J, Yang G D. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210: 173–183
https://doi.org/10.1016/j.apcatb.2017.03.066
33 Pan J H, Cai Z C, Yu Y, Zhao X S. Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis. Journal of Materials Chemistry, 2011, 21(30): 11430–11438
https://doi.org/10.1039/c1jm11326g
34 Pan J H, Zhang X, Du Alan J, Sun D D, Leckie J O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society, 2008, 130(34): 11256–11257
https://doi.org/10.1021/ja803582m
35 Huang Y, Gao Y X, Zhang Q, Cao J J, Huang R J, Ho W K, Lee S C. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NOx removal studies. Applied Catalysis A, General, 2016, 515: 170–178
https://doi.org/10.1016/j.apcata.2016.02.007
36 Yang D, Sun Y Y, Tong Z W, Nan Y H, Jiang Z Y. Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight. Journal of Hazardous Materials, 2016, 312: 45–54
https://doi.org/10.1016/j.jhazmat.2016.03.032
37 Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2(3): 1500006
38 Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y, Jiang M H, Wang P, Whangbo M H. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive (001) facets. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(46): 12576–12579
https://doi.org/10.1002/chem.200902438
39 Qin Y, Wang G Y, Wang Y J. Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen. Catalysis Communications, 2007, 8(6): 926–930
https://doi.org/10.1016/j.catcom.2006.11.025
40 Chen X, Cheng J P, Shou Q L, Liu F, Zhang X B. Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers. CrystEngComm, 2012, 14(4): 1271–1276
https://doi.org/10.1039/C1CE05943B
41 Pan J H, Shen C, Ivanova I, Zhou N, Wang X Z, Tan W C, Xu Q H, Bahnemann D W, Wang Q. Self-template synthesis of porous perovskite titanate solid and hollow submicrospheres for photocatalytic oxygen evolution and mesoscopic solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14859–14869
https://doi.org/10.1021/acsami.5b03396
42 Li H Q, Cui Y M, Wu X C, Hong W S, Hua L. Effect of La contents on the structure and photocatalytic activity of La-SrTiO3 catalysts.Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2597–2604
43 Zhang J Y, Zhao Z Y, Wang X Y, Yu T, Guan J, Yu Z T, Li Z S, Zou Z G. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(43): 18396–18400
https://doi.org/10.1021/jp106648c
44 Yao S H, Jia X Y, Jiao L L, Zhu C, Shi Z L. La-doped TiO2 hollow fibers and their photocatalytic activity under UV and visible light. Indian Journal of Chemistry, 2012, 51(8): 1049–1056
45 Marina O A, Canfield N L, Stevenson J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 2002, 149(1): 21–28
https://doi.org/10.1016/S0167-2738(02)00140-6
46 Zhou X, Zhang X N, Feng X B, Zhou J, Zhou S Q. Preparation of a La/N co-doped TiO2 film electrode with visible light response and its photoelectrocatalytic activity on a Ni substrate. Dyes and Pigments, 2016, 125(12): 375–383
https://doi.org/10.1016/j.dyepig.2015.10.044
47 Zhang Y, Zhao Z Y, Chen J R, Cheng L, Chang J, Sheng W C, Hu C Y, Cao S S. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2015, 165: 715–722
https://doi.org/10.1016/j.apcatb.2014.10.063
48 Ng J W, Xu S P, Zhang X W, Yang H Y, Sun D D. Hybridized nanowires and cubes: A novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Advanced Functional Materials, 2010, 20(24): 4287–4294
https://doi.org/10.1002/adfm.201000931
49 Wang C D, Qiu H, Inoue T, Yao Q W. Highly active SrTiO3 for visible light photocatalysis: A first-principles prediction. Solid State Communications, 2014, 181(3): 5–8
https://doi.org/10.1016/j.ssc.2013.11.026
50 Wang A, Shen S, Zhao Y, Wu W. Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. Journal of Colloid and Interface Science, 2015, 445: 330–336
https://doi.org/10.1016/j.jcis.2015.01.017
51 Chen X, Ta P F, Zhou B H, Dong H G, Pan J, Xiong X. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2015, 647(2): 456–462
https://doi.org/10.1016/j.jallcom.2015.06.056
52 Qiu B C, Zhong C C, Xing M Y, Zhang J L. Facile preparation of C-modified TiO2 supported on MCF for high visible-light-driven photocatalysis. RSC Advances, 2015, 5(23): 17802–17808
https://doi.org/10.1039/C4RA17151A
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed