Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (2): 247-251   https://doi.org/10.1007/s11705-018-1710-2
  本期目录
Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths
Hanbin Zheng, Christine Picard, Serge Ravaine()
CNRS, CRPP, UMR 5031, Universite? de Bordeaux, F-33600, Pessac, France
 全文: PDF(196 KB)   HTML
Abstract

Nanostructured metal surfaces have been known to exhibit properties that deviate from that of the bulk material. By simply modifying the texture of a metal surface, various unique optical properties can be observed. In this paper, we present a simple two step electrochemical process combining electrodeposition and anodization to generate black gold surfaces. This process is simple, versatile and up-scalable for the production of large surfaces. The black gold films have remarkable optical behavior as they absorb more than 93% of incident light over the entire visible spectrum and also exhibit no specular reflectance. A careful analysis by scanning electron microscopy reveals that these unique optical properties are due to their randomly rough surface, as they consist in a forest of dendritic microstructures with a nanoscale roughness. This new type of black films can be fabricated to a large variety of substrates, turning them to super absorbers with potential applications in photovoltaic solar cells or highly sensitive detectors and so on.

Key wordsnanostructuration    light absorption    coating    gold    electrodeposition    anodization
收稿日期: 2017-09-29      出版日期: 2018-05-09
Corresponding Author(s): Serge Ravaine   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(2): 247-251.
Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1710-2
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I2/247
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Thoman A, Kern A, Helm H, Walther M. Nanostructured gold films as broadband terahertz antireflection coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195405
https://doi.org/10.1103/PhysRevB.77.195405
2 Vorobyev A Y, Guo C. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(19): 195422
https://doi.org/10.1103/PhysRevB.72.195422
3 Harris L, McGinnies R T, Siegel B M. The preparation and optical properties of gold blacks. Journal of the Optical Society of America, 1948, 38(7): 582–589
https://doi.org/10.1364/JOSA.38.000582
4 Hutley M C, Maystre D. The total absorption of light by a diffraction grating. Optics Communications, 1976, 19(3): 431–436
https://doi.org/10.1016/0030-4018(76)90116-4
5 Hartman N F, Gaylord T K. Antireflection gold surface-relief gratings: Experimental characteristics. Applied Optics, 1988, 27(17): 3738–3743
https://doi.org/10.1364/AO.27.003738
6 Kravets V G, Schedin F, Grigorenko A N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(20): 205405
https://doi.org/10.1103/PhysRevB.78.205405
7 Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
8 Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M. Structured metal film as a perfect absorber. Advanced Materials, 2013, 25(29): 3994–4000
https://doi.org/10.1002/adma.201300223
9 Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasi-omnidirectional total light absorption in nanostructured gold surfaces. Optical Materials Express, 2014, 4(6): 1236–1242
https://doi.org/10.1364/OME.4.001236
10 Toma M, Loget G, Corn R M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Letters, 2013, 13(12): 6164–6169
https://doi.org/10.1021/nl403496a
11 Alici K B, Bilotti F, Vegni L, Ozbay E. Experimental verification of metamaterial based subwavelength microwave absorbers. Journal of Applied Physics, 2010, 108(8): 083113
https://doi.org/10.1063/1.3493736
12 Cheng Y H, Yang H. Design, simulation, and measurement of metamaterial absorber. Microwave and Optical Technology Letters, 2010, 52(4): 877–880
https://doi.org/10.1002/mop.25068
13 Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 2011, 5(6): 4641–4647
https://doi.org/10.1021/nn2004603
14 Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
https://doi.org/10.1103/PhysRevLett.104.207403
15 Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
https://doi.org/10.1063/1.3442904
16 Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasi-total omnidirectional light absorption in nanostructured gold films. Applied Physics. A, Materials Science & Processing, 2014, 117(2): 471–475
https://doi.org/10.1007/s00339-014-8684-9
17 Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses. Applied Physics Letters, 2008, 92(4): 041914
https://doi.org/10.1063/1.2834902
18 Zheng H, Almeida R M, Rivera T, Ravaine S. Fabrication of broadband omnidirectional non-reflective gold surfaces by electrodeposition. Advanced Device Materials, 2015, 1(1): 11–16
https://doi.org/10.1179/2055031614Y.0000000003
19 Nishio K, Masuda H. Anodization of gold in oxalate solution to form a nanoporous black film. Angewandte Chemie International Edition, 2011, 50(7): 1603–1607
https://doi.org/10.1002/anie.201005700
20 Grillo R, Torrisi V, Ruffino F. An experimental study on the porosity of dealloyed AuAg leafs. Superlattices and Microstructures, 2016, 100: 780–791
https://doi.org/10.1016/j.spmi.2016.10.047
21 Abdelaziz R, Disci-Zayed D, Hedayati M K, Pöhls J H, Zillohu A U, Erkartal B, Chakravadhanula V S K, Duppel V, Kienle L, Elbahri M. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nature Communications, 2013, 4: 2400
https://doi.org/10.1038/ncomms3400
22 Maradudin A A. Light scattering and nanoscale surface roughness. Berlin: Springer, 2011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed