S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion
Chao Zhang1, Chenbao Lu1, Shuai Bi1, Yang Hou2(), Fan Zhang1(), Ming Cai1, Yafei He1, Silvia Paasch3(), Xinliang Feng3,4, Eike Brunner3, Xiaodong Zhuang1
1. State Key Laboratory of Metal Matrix Composites & Shanghai Key Lab of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 3. Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany 4. Chair for Molecular Functional Materials, Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommensenstr. 4, 01069 Dresden, Germany
Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2·g−1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g−1 at 5 mV·s−1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s−1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure-performance interrelationship study of heteroatoms co-doped porous carbon for energy applications.
Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217): 1246501 https://doi.org/10.1126/science.1246501
pmid: 25554791
2
Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221 https://doi.org/10.1038/ncomms8221
pmid: 26072734
3
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828 https://doi.org/10.1039/C1CS15060J
pmid: 21779609
4
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377 https://doi.org/10.1038/nmat1368
pmid: 15867920
5
Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427 https://doi.org/10.1002/adma.201401857
pmid: 25155302
6
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730 https://doi.org/10.1039/C4EE03229B
7
Wu Z S, Parvez K, Feng X, MµLlen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487 https://doi.org/10.1038/ncomms3487
pmid: 24042088
8
Merlet C, Rotenberg B, Madden P A, Taberna P L, Simon P, Gogotsi Y, Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11(4): 306–310 https://doi.org/10.1038/nmat3260
pmid: 22388172
Zhuang X, Zhang F, Wu D, Forler N, Liang H, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X. Two-dimensional sandwich-type, graphene-based conjugated microporous polymers. Angewandte Chemie International Edition, 2013, 52(37): 9668–9672 https://doi.org/10.1002/anie.201304496
pmid: 23893563
11
Huang X, Yang L, Hao S, Zheng B, Yan L, Qu F, Asiri A M, Sun X. Sun X. N-Doped carbon dots: A metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4(3): 537–540 https://doi.org/10.1039/C6QI00517A
12
Liu Q, Pu Z, Tang C, Asiri A M, Qusti A H, Al-Youbi A O, Sun X. N-Doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36: 57–61 https://doi.org/10.1016/j.elecom.2013.09.013
13
Ning R, Ge C, Liu Q, Tian J, Asiri A M, Alamry K A, Li C, Sun X. Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78: 60–69 https://doi.org/10.1016/j.carbon.2014.06.048
14
Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014, 6(2): 1011–1017 https://doi.org/10.1021/am404536w
pmid: 24377299
15
Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828 https://doi.org/10.1002/adma.200902812
pmid: 20217791
16
Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy & Environmental Science, 2014, 7(11): 3574–3592 https://doi.org/10.1039/C4EE01075B
17
Wang L, Yu P, Zhao L, Tian C, Zhao D, Zhou W, Yin J, Wang R, Fu H. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4(1): 5184 https://doi.org/10.1038/srep05184
pmid: 24898033
18
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500–506 https://doi.org/10.1038/nmat2460
pmid: 19448613
19
Zhang Y, Riduan S N. Functional porous organic polymers for heterogeneous catalysis. Chemical Society Reviews, 2012, 41(6): 2083–2094 https://doi.org/10.1039/C1CS15227K
pmid: 22134621
20
Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications. Chemical Society Reviews, 2013, 42(2): 548–568 https://doi.org/10.1039/C2CS35072F
pmid: 23060270
21
Su Y, Yao Z, Zhang F, Wang H, Mics Z, Cánovas E, Bonn M, Zhuang X, Feng X. Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Advanced Functional Materials, 2016, 26(32): 5893–5902 https://doi.org/10.1002/adfm.201602158
22
Zhuang X, Gehrig D, Forler N, Liang H, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Advanced Materials, 2015, 27(25): 3789–3796 https://doi.org/10.1002/adma.201501786
pmid: 25991493
23
Zhao W, Han S, Zhuang X, Zhang F, Mai Y, Feng X. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(46): 23352–23359 https://doi.org/10.1039/C5TA06702B
24
Han S, Feng Y, Zhang F, Yang C, Yao Z, Zhao W, Qiu F, Yang L, Yao Y, Zhuang X, Feng X. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906 https://doi.org/10.1002/adfm.201501390
25
He Y, Gehrig D, Zhang F, Lu C, Zhang C, Cai M, Wang Y, Laquai F, Zhuang X, Feng X. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Advanced Functional Materials, 2016, 26(45): 8255–8265 https://doi.org/10.1002/adfm.201603693
26
Yu J S, Kang S, Yoon S B, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. Journal of the American Chemical Society, 2002, 124(32): 9382–9383 https://doi.org/10.1021/ja0203972
pmid: 12167027
27
Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537–1541 https://doi.org/10.1126/science.1200770
pmid: 21566159
28
Fechler N, Fellinger T P, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Advanced Materials, 2013, 25(1): 75–79 https://doi.org/10.1002/adma.201203422
pmid: 23027658
29
Deng X, Zhao B, Zhu L, Shao Z. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93: 48–58 https://doi.org/10.1016/j.carbon.2015.05.031
30
Liang H W, Zhuang X, BrµLler S, Feng X, MµLlen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5(1): 4973 https://doi.org/10.1038/ncomms5973
pmid: 25229121
31
Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Advanced Materials, 2016, 28(10): 1981–1987 https://doi.org/10.1002/adma.201505131
pmid: 26753773
32
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726 https://doi.org/10.1016/j.carbon.2008.07.018
33
Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45(10): 1989–1996 https://doi.org/10.1016/j.carbon.2007.06.002
34
Debnath S, Bedi A, Zade S S. Thienopentathiepine: A sulfur containing fused heterocycle for conjugated systems and their electrochemical polymerization. Polymer Chemistry, 2015, 6(44): 7658–7665 https://doi.org/10.1039/C5PY01133G
35
Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Advanced Materials, 2017, 29(38): 1702428 https://doi.org/10.1002/adma.201702428
pmid: 28833545
36
Sandel V, Freedman H. Tetraphenylcyclobutadiene derivatives. VI. An investigation of the intermediacy of tetraphenylcyclobutadiene. Journal of the American Chemical Society, 1968, 90(8): 2059–2069 https://doi.org/10.1021/ja01010a027
37
Li T T T, Brubaker C H Jr. Catalytic oligomerization in the reaction of diphenylacetylene with chromium vapor. Inorganica Chimica Acta, 1982, 65: L113–L114 https://doi.org/10.1016/S0020-1693(00)93513-8
38
Schipper D J, Moh L C H, MµLler P, Swager T M. Dithiolodithiole as a building block for conjugated materials. Angewandte Chemie International Edition, 2014, 53(23): 5847–5851 https://doi.org/10.1002/anie.201310290
pmid: 24777607
39
Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, MµLlen K, Feng X. Persulfurated coronene: A new generation of “sulflower”. Journal of the American Chemical Society, 2017, 139(6): 2168–2171 https://doi.org/10.1021/jacs.6b12630
pmid: 28128953
40
Silverstein M, Visoly-Fisher I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer, 2002, 43(1): 11–20 https://doi.org/10.1016/S0032-3861(01)00582-1
41
Vasquez M, Cruz G, Olayo M, Timoshina T, Morales J, Olayo R. Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer, 2006, 47(23): 7864–7870 https://doi.org/10.1016/j.polymer.2006.09.029
42
Kamat S V, Yadav J, Puri V, Puri R. Modification of the properties of polythiophene thin films by vapor chopping. Applied Surface Science, 2012, 258(19): 7567–7573 https://doi.org/10.1016/j.apsusc.2012.04.088
43
Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation & Stability, 2015, 120: 392–401 https://doi.org/10.1016/j.polymdegradstab.2015.07.021
44
Miron C, Hulubei C, Sava I, Quade A, Steuer A, Weltmann K D, Kolb J. Polyimide film surface modification by nanosecond high voltage pulse driven electrical discharges in water. Plasma Processes and Polymers, 2015, 12(8): 734–735 https://doi.org/10.1002/ppap.201400170
45
Sun D, Yang J, Yan X. Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications, 2015, 51(11): 2134–2137 https://doi.org/10.1039/C4CC08297D
pmid: 25553914
46
Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy & Environmental Science, 2015, 8(10): 2916–2921 https://doi.org/10.1039/C5EE01985K
47
Yang S, Zhi L, Tang K, Feng X, Maier J, MµLlen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012, 22(17): 3634–3640 https://doi.org/10.1002/adfm.201200186
48
Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J, Liu J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Advanced Materials, 2012, 24(9): 1176–1181 https://doi.org/10.1002/adma.201103392
pmid: 22278978
49
Kim J S, Hwang T H, Kim B G, Min J, Choi J W. A lithium-sulfur battery with a high areal energy density. Advanced Functional Materials, 2014, 24(34): 5359–5367 https://doi.org/10.1002/adfm.201400935
50
Cao C, Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X, 0. Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5(6): 2057–2064 https://doi.org/10.1039/C3PY01581E
51
Liu J, Yang T, Wang D, Lu G Q, Zhao D, Qiao S Z. Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798 https://doi.org/10.1038/ncomms3798
52
Lee M S, Park M, Kim H Y, Park S J. Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Scientific Reports, 2016, 6(1): 23224 https://doi.org/10.1038/srep23224
pmid: 26987683
53
Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013, 6(10): 2839–2855 https://doi.org/10.1039/c3ee41444b
54
Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 2011, 4(4): 1440–1446 https://doi.org/10.1039/c0ee00261e
55
Niu Z, Zhou W, Chen X, Chen J, Xie S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Advanced Materials, 2015, 27(39): 6002–6008 https://doi.org/10.1002/adma.201502263
pmid: 26316309
56
Ran F, Zhang X, Liu Y, Shen K, Niu X, Tan Y, Kong L, Kang L, Xu C, Chen S. Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5(106): 87077–87083 https://doi.org/10.1039/C5RA15594K
57
Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, MµLlen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135 https://doi.org/10.1002/adma.201201948
pmid: 22807002
58
Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M, Forster M, Chassé T, Pichler T, Riedl T, Chen Y, Scherf U. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Advanced Materials, 2015, 27(42): 6714–6721 https://doi.org/10.1002/adma.201503390
pmid: 26413974
59
Chang J, Jin M, Yao F, Kim T H, Le V T, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Advanced Functional Materials, 2013, 23(40): 5074–5083 https://doi.org/10.1002/adfm201301851
60
Lei Z, Lu L, Zhao X. The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 2012, 5(4): 6391–6399 https://doi.org/10.1039/C1EE02478G
61
Sumboja A, Foo C Y, Wang X, Lee P S. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced Materials, 2013, 25(20): 2809–2815 https://doi.org/10.1002/adma.201205064
pmid: 23580421
62
Nasini U B, Bairi V G, Ramasahayam S K, Bourdo S E, Viswanathan T, Shaikh A U. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. Journal of Power Sources, 2014, 250: 257–265 https://doi.org/10.1016/j.jpowsour.2013.11.014
63
Yuan K, Zhuang X, Fu H, Brunklaus G, Forster M, Chen Y, Feng X, Scherf U. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2016, 55(24): 6858–6863 https://doi.org/10.1002/anie.201600850
pmid: 27100378
64
Zhu J, Sakaushi K, Clavel G, Shalom M, Antonietti M, Fellinger T P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137(16): 5480–5485 https://doi.org/10.1021/jacs.5b01072
pmid: 25851622
65
Nam G, Park J, Kim S T, Shin D B, Park N, Kim Y, Lee J S, Cho J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 2014, 14(4): 1870–1876 https://doi.org/10.1021/nl404640n
pmid: 24635744