Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (1): 192-198   https://doi.org/10.1007/s11705-018-1728-5
  本期目录
Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel
Rafael Muniz de Oliveira1, Nereida Mello da Rosa Gioppo1, Jancineide Oliveira de Carvalho2,3, Francilio Carvalho Oliveira3,4, Thomas Jay Webster4, Fernanda Roberta Marciano3, Anderson Oliveira Lobo3,5()
1. University Hospital of the West of Paraná, State University of West of Paraná, Cascavel, PR, Brazil
2. University Center for Health, Humanities and Technology of Piauí (UNINOVAFAPI), Piauí, Brazil
3. Science and Technology Institute, Brasil University, Itaquera, SP, Brazil
4. Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, MA 02115, USA
5. Materials Science and Engineering graduation program, Technology Center, Federal University of Piauí, PI, Brazil
 全文: PDF(767 KB)   HTML
Abstract

Though they reduce microorganism growth, current hospital disinfectants also damage many of today’s modern electronic devices such as tablets and smartphones. Herein, the efficacy of a new chlorhexidine digluconate gel (CDG) was tested as a disinfectant for mobile and electronic devices in a clinical environment. Specifically, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus were used to infect the screen of eight smartphones. The CDG was prepared at concentrations of 2%, 4% and 6%, and tested on paper disks infected with these bacteria before being tested on the smartphones. The devices were disinfected with the CDG gel (4%) at two times: immediately and after 5 min of the bacterial contamination. In all cases, the CDG gel eliminated 100% of gram-positive and gram-negative microorganisms compared to the control (without any agent). In addition, the gel did not damage the smartphones. Therefore, our study suggests that the CDG gel may be applied to disinfect a wide range of electronic devices for health care professionals in the hospital environment.

Key wordssmartphones    disinfection    clinical environment    chlorhexidine    bacteria
收稿日期: 2017-10-22      出版日期: 2019-02-25
Corresponding Author(s): Anderson Oliveira Lobo   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(1): 192-198.
Rafael Muniz de Oliveira, Nereida Mello da Rosa Gioppo, Jancineide Oliveira de Carvalho, Francilio Carvalho Oliveira, Thomas Jay Webster, Fernanda Roberta Marciano, Anderson Oliveira Lobo. Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel. Front. Chem. Sci. Eng., 2019, 13(1): 192-198.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1728-5
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I1/192
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Microorganisms Control Immediately 5 min
E. coli (ESBL) Growth Effective Effective
K. pneumoniae (KPC) Growth Effective Effective
P. aeruginosa (resistant to carbapenens) Growth Effective Effective
S. aureus (MRSA) Growth Effective Effective
Tab.1  
1 G RMadden, R A Weinstein, C D Sifri. Diagnostic stewardship for healthcare-associated infections: Opportunities and challenges to safely reduce test use. Infection Control and Hospital Epidemiology, 2018, 39(2): 214–218
https://doi.org/10.1017/ice.2017.278 pmid: 29331159
2 M CGrant, D Yang, C LWu, M AMakary, E CWick. Impact of enhanced recovery after surgery and fast track surgery pathways on healthcare-associated infections. Results from a systematic review and meta-analysis. Annals of Surgery, 2017, 265(1): 68–79
https://doi.org/10.1097/SLA.0000000000001703 pmid: 28009729
3 DJasovský, J Littmann, AZorzet, OCars. Antimicrobial resistance-a threat to the world’s sustainable development. Upsala Journal of Medical Sciences, 2016, 121(3): 159–164
https://doi.org/10.1080/03009734.2016.1195900 pmid: 27416324
4 S WLemmen, H Häfner, DZolldann, SStanzel, RLütticken. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment. Journal of Hospital Infection, 2004, 56(3): 191–197
https://doi.org/10.1016/j.jhin.2003.12.004 pmid: 15003666
5 DDeak, K Outterson, J HPowers, A SKesselheim. Progress in the fight against multidrug-resistant bacteria? A review of U.S. food and drug administration—approved antibiotics, 2010–2015. Annals of Internal Medicine, 2016, 165(5): 363–372
https://doi.org/10.7326/M16-0291 pmid: 27239977
6 AKramer, I Schwebke, GKampf. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, 2006, 6(1): 130
https://doi.org/10.1186/1471-2334-6-130 pmid: 16914034
7 MHammon, B Kunz, VDinzl, F JKammerer, S ASchwab, CBogdan, MUder, P M Schlechtweg. Practicability of hygienic wrapping of touchscreen operated mobile devices in a clinical setting. PLoS One, 2014, 9(9): e106445
https://doi.org/10.1371/journal.pone.0106445 pmid: 25180580
8 L HZeglin. Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Frontiers in Microbiology, 2015, 6(454): 454
pmid: 26042102
9 SZakai, A Mashat, AAbumohssin, ASamarkandi, BAlmaghrabi, HBarradah, AJiman-Fatani. Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia. Journal of Microscopy and Ultrastructure, 2016, 4(3): 143–146
https://doi.org/10.1016/j.jmau.2015.12.004
10 J ASorensen, F M Doherty, M G Newman, T F Flemmig. Gingival enhancement in fixed prosthodontics. Part I: Clinical findings. Journal of Prosthetic Dentistry, 1991, 65(1): 100–107
https://doi.org/10.1016/0022-3913(91)90059-6 pmid: 2033528
11 C GJones. Chlorhexidine: Is it still the gold standard? Periodontology 2000, 1997, 15(1): 55–62
12 S CSupranoto, D ESlot, MAddy, G AVan der Weijden. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: A systematic review. International Journal of Dental Hygiene, 2015, 13(2): 83–92
https://doi.org/10.1111/idh.12078 pmid: 25059640
13 LVitkov, A Hermann, W DKrautgartner, MHerrmann, KFuchs, MKlappacher, MHannig. Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microscopy Research and Technique, 2005, 68(2): 85–89
https://doi.org/10.1002/jemt.20238 pmid: 16228984
14 C C RFerraz, B P F AGomes, A AZaia, F BTeixeira, F JSouza-Filho. Comparative study of the antimicrobial efficacy of chlorhexidine gel, chlorhexidine solution and sodium hypochlorite as endodontic irrigants. Brazilian Dental Journal, 2007, 18(4): 294–298
https://doi.org/10.1590/S0103-64402007000400004 pmid: 18278298
15 J YKim, J Y Song, E J Lee, S K Park. Rheological properties and microstructures of Carbopol gel network system. Colloid & Polymer Science, 2003, 281(7): 614–623
https://doi.org/10.1007/s00396-002-0808-7
16 YZheng, W Q Ouyang, Y P Wei, S F Syed, C S Hao, B Z Wang, Y H Shang. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study. International Journal of Nanomedicine, 2016, 11: 5971–5987
https://doi.org/10.2147/IJN.S119286 pmid: 27877042
17 J IMathew, J L Cadnum, T Sankar, A LJencson, SKundrapu, C JDonskey. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices. American Journal of Infection Control, 2016, 44(6): 724–726
https://doi.org/10.1016/j.ajic.2015.12.043 pmid: 26921014
18 MGashaw, D Abtew, ZAddis. Prevalence and antimicrobial susceptibility pattern of bacteria isolated from mobile phones of health care professionals working in gondar town health centers. International Scholarly Research Notices, 2014, 2014: 1–6
19 I AShakir, N H Patel, R R Chamberland, S G Kaar. Investigation of cell phones as a potential source of bacterial contamination in the operating room. Journal of Bone and Joint Surgery, 2015, 97(3): 225–231
https://doi.org/10.2106/JBJS.N.00523 pmid: 25653323
20 RA-sasutjarit, A Sirivat, PVayumhasuwan. Viscoelastic properties of Carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. Pharmaceutical Research, 2005, 22(12): 2134–2140
https://doi.org/10.1007/s11095-005-8244-2 pmid: 16215775
21 SJana, S Manna, A KNayak, K KSen, S KBasu. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids and Surfaces B: Biointerfaces, 2014, 114: 36–44
https://doi.org/10.1016/j.colsurfb.2013.09.045 pmid: 24161504
22 B WBarry, M C Meyer. The rheological properties of carbopol gels. I. Continuous shear and creep properties of carbopol gels. International Journal of Pharmaceutics, 1979, 2(1): 1–25
https://doi.org/10.1016/0378-5173(79)90025-5
23 I R MSantos, A C AMoreira, M G CCosta, M CBarbosa. Effect of 0.12% chlorhexidine in reducing microorganisms found in aerosol used for dental prophylaxis of patients submitted to fixed orthodontic treatment. Dental Press Journal of Orthodontics, 2014, 19(3): 95–101
https://doi.org/10.1590/2176-9451.19.3.095-101.oar pmid: 25162572
24 GMcDonnell, A D Russell. Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 1999, 12(1): 147–179
pmid: 9880479
25 LPerioli, V Ambrogi, FAngelici, MRicci, SGiovagnoli, MCapuccella, CRossi. Development of mucoadhesive patches for buccal administration of ibuprofen. Journal of Controlled Release, 2004, 99(1): 73–82
https://doi.org/10.1016/j.jconrel.2004.06.005 pmid: 15342182
26 D CVelasquez Reyes, MBloomer, JMorphet. Prevention of central venous line associated bloodstream infections in adult intensive care units: A systematic review. Intensive & Critical Care Nursing, 2017, 43: 12–22
https://doi.org/10.1016/j.iccn.2017.05.006 pmid: 28663107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed