Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (1): 164-170   https://doi.org/10.1007/s11705-018-1755-2
  本期目录
Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill
Marcela Achimovičová1,2(), Erika Dutková2, Erika Tóthová2, Zdenka Bujňáková2, Jaroslav Briančin2, Satoshi Kitazono3
1. Institute of Mineral and Waste Processing, Waste Disposal and Geomechanics, Clausthal University of Technology, Clausthal 38678, Germany
2. Institute of Geotechnics, Slovak Academy of Sciences, Košice 04001, Slovakia
3. Nakase Refinery, Nihon Seiko Co., Ltd., Yabu-shi, Hyogo 667-1111, Japan
 全文: PDF(588 KB)   HTML
Abstract

Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.

Key wordscopper sulfide    industrial mechanochemical synthesis    thermal analysis    optical properties
收稿日期: 2018-04-20      出版日期: 2019-02-25
Corresponding Author(s): Marcela Achimovičová   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(1): 164-170.
Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1755-2
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I1/164
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Cu/at-% S/at-%
50.4 49.6
50.2 49.8
63.9 36.1
51.2 48.8
50.7 49.3
Tab.1  
Fig.6  
Fig.7  
Fig.8  
1 XRui, H Tan, QYan. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6(17): 9889–9924
https://doi.org/10.1039/C4NR03057E pmid: 25073046
2 PRoy, S K Srivastava. Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 2015, 17(41): 7801–7815
https://doi.org/10.1039/C5CE01304F
3 SGoel, F Chen, WCai. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small, 2014, 10(4): 631–645
https://doi.org/10.1002/smll.201301174 pmid: 24106015
4 XLiu, B Li, FFu, KXu, R Zou, QWang, BZhang, ZChen, J Hu. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Transactions, 2014, 43(30): 11709–11715
https://doi.org/10.1039/C4DT00424H pmid: 24950757
5 YLi, J Scott, Y TChen, LGuo, M Zhao, XWang, WLu. Direct dry-grinding synthesis of monodisperse lipophilic CuS nanoparticles. Materials Chemistry and Physics, 2015, 162: 671–676
https://doi.org/10.1016/j.matchemphys.2015.06.041 pmid: 26339112
6 MZhou, S Song, JZhao, MTian, C Li. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(46): 8939–8948
https://doi.org/10.1039/C5TB01866H pmid: 27725882
7 A KSahoo, S K Srivastava. Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity. Journal of Nanoparticle Research, 2013, 15(4): 1591–1606
https://doi.org/10.1007/s11051-013-1591-8
8 Z KYang, L X Song, Y Teng, JXia. Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(47): 20004–20009
https://doi.org/10.1039/C4TA04232H
9 S BAziz, R T Abdulwahid, H A Rsaul, H M Ahmed. In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. Journal of Materials Science Materials in Electronics, 2016, 27(5): 4163–4171
https://doi.org/10.1007/s10854-016-4278-y
10 Ullmann’s Encyclopedia of Industrial Chemistry. Vol A1. 5th ed. Florida: VCH Publishers, 1985
11 The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals. New Jersey: Merck and Co., Inc., Whitehouse Station, 1996
12 Hawley’s Condensed Chemical Dictionary. 13th ed. New York: John Wiley & Sons, Inc., 1997
13 K BTang, D Chen, Y FLiu, G ZShen, H GZheng, Y TQian. Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. Journal of Crystal Growth, 2004, 263(1–4): 232–236
https://doi.org/10.1016/j.jcrysgro.2003.11.045
14 WDu, X Qian, XMa, QGong, H Cao, JYin. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry, 2007, 13(11): 3241–3247
https://doi.org/10.1002/chem.200601368 pmid: 17200918
15 W JLou, M Chen, X BWang, W MLiu. Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. Journal of Physical Chemistry C, 2007, 111(27): 9658–9663
https://doi.org/10.1021/jp070166n
16 XZhang, G Wang, AGu, YWei, B Fang. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications, 2008, 45(45): 5945–5947
https://doi.org/10.1039/b814725f pmid: 19030547
17 X PShen, H Zhao, H QShu, HZhou, A H Yuan. Self-assembly of CuS nanoflakes into flower-like microspheres: Synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422–427
https://doi.org/10.1016/j.jpcs.2008.11.009
18 M RWang, F Xie, W JLi, M FChen, YZhao. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(30): 8616–8621
https://doi.org/10.1039/c3ta11739a
19 Q YLu, F Gao, D YZhao. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Letters, 2002, 2(7): 725–728
https://doi.org/10.1021/nl025551x
20 PRoy, S K Srivastava. Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single-source precursor. Crystal Growth & Design, 2006, 6(8): 1921–1926
https://doi.org/10.1021/cg060134+
21 L FChen, W Yu, YLi. Synthesis and characterization of tubular CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1–2): 52–54
https://doi.org/10.1016/j.powtec.2008.09.007
22 B RJia, M L Qin, X Z Jiang, Z L Zhang, L Zhang, YLiu, X HQu. Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals. Journal of Nanoparticle Research, 2013, 15(3): 1469–1478
https://doi.org/10.1007/s11051-013-1469-9
23 Y LAuyoong, P L Yap, X Huang, S BAbd Hamid. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chemistry Central Journal, 2013, 7(1): 67
https://doi.org/10.1186/1752-153X-7-67 pmid: 23575312
24 L FChen, Y Z Shang, H L Liu, Y Hu. Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion. Materials & Design, 2010, 31(4): 1661–1665
https://doi.org/10.1016/j.matdes.2009.05.047
25 SThongtem, C Wichasilp, TThongtem. Transient solid-state production of nanostructured CuS flowers. Materials Letters, 2009, 63(28): 2409–2412
https://doi.org/10.1016/j.matlet.2009.07.068
26 K RNemade, S A Waghuley. Band gap engineering of CuS nanoparticles for artificial photosynthesis. Materials Science in Semiconductor Processing, 2015, 39: 781–785
https://doi.org/10.1016/j.mssp.2015.05.045
27 A LAbdelhady, KRamasamy, M AMalik, PO’Brien, S JHaigh, JRaftery. New routes to copper sulfide nanostructures and thin films. Journal of Materials Chemistry, 2011, 21(44): 17888–17895
https://doi.org/10.1039/c1jm13277f
28 NMukherjee, A Sinha, G GKhan, DChandra, ABhaumik, AMondal. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique. Materials Research Bulletin, 2011, 46(1): 6–11
https://doi.org/10.1016/j.materresbull.2010.10.004
29 H LXu, W Z Wang, W Zhu. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Materials Letters, 2006, 60(17–18): 2203–2206
https://doi.org/10.1016/j.matlet.2005.12.098
30 AGhezelbash, B A Korgel. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir, 2005, 21(21): 9451–9456
https://doi.org/10.1021/la051196p pmid: 16207021
31 YXie, L Carbone, CNobile, VGrillo, SD’Agostino, FDella Sala, CGiannini, DAltamura, COelsner, CKryschi, P DCozzoli. Metallic-like stoichiometric copper sulfide nanocrystals: Phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano, 2013, 7(8): 7352–7369
https://doi.org/10.1021/nn403035s pmid: 23859591
32 JLiu, D F Xue. Rapid and scalable route to CuS biosensors: A microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry, 2011, 21(1): 223–228
https://doi.org/10.1039/C0JM01714K
33 AGhahremaninezhad, EAsselin, D GDixon. One-step template-free electrosynthesis of 300 mm long copper sulfide nanowires. Electrochemistry Communications, 2011, 13(1): 12–15
https://doi.org/10.1016/j.elecom.2010.10.032
34 F FWang, H Dong, J LPan, J JLi, QLi, D S Xu. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. Journal of Physical Chemistry C, 2014, 118(34): 19589–19598
https://doi.org/10.1021/jp505737u
35 TOhtani, M Motoki, KKoh, KOhshima. Synthesis of binary copper chalcogenides by mechanical alloying. Materials Research Bulletin, 1995, 30(12): 1495–1504
https://doi.org/10.1016/0025-5408(95)00155-7
36 AHayashi, T Ohtomo, FMizuno, KTadanaga, MTatsumisago. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochemistry Communications, 2003, 5(8): 701–705
https://doi.org/10.1016/S1388-2481(03)00167-X
37 MBaláž, AZorkovská, FUrakaev, PBaláž, JBriančin, ZBujňáková, M Achimovičová, EGock. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842
https://doi.org/10.1039/C6RA20588G
38 BZhang, Z Ge, ZYu, YLiu. CN Patent, 102320647 A, 2012–01–18
39 KWang, G L Tan. Synthesis and optical properties of CuS nanocrystals by mechanical alloying process. Current Nanoscience, 2010, 6(2): 163–168
https://doi.org/10.2174/157341310790945713
40 MKristl, I Ban, SGyergyek. Preparation of nanosized copper and cadmium chalcogenides by mechanochemical synthesis. Materials and Manufacturing Processes, 2013, 28(9): 1009–1013
41 Gmelins Handbuch der Anorganischen Chemie. Vol 60, Teil B: Kupfer. Weinheim: Verlag Chemie, GmbH, 1958, 424 (in German)
42 RBlachnik, A Muller. The formation of Cu2S from the elements I. Copper used in form of powders. Thermochimica Acta, 2000, 361(1-2): 31–52
https://doi.org/10.1016/S0040-6031(00)00545-1
43 MFöldvári. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, Vol 213. Occasional Papers of the Geological Institute of Hungary. Geological Institute of Hungary, 2011, 177
44 J GDunn, C Muzenda. Thermal oxidation of covellite (CuS). Thermochimica Acta, 2001, 369(1-2): 117–123
https://doi.org/10.1016/S0040-6031(00)00748-6
45 L GBerg, E N Shlyapkina. Characteristic features of sulfide mineral DTA. Journal of Thermal Analysis, 1975, 8(3): 417–426
https://doi.org/10.1007/BF01910120
46 FTesfaye, D Lindberg, PTaskinen. The Cu-Ni-S System and Its Significance in Metallurgical Processes. In: Allanore A, Barlett L, Wang C, Zhang L, Lee J, eds. EPD Congress 2016. Berlin: Springer International Publishing, 2016, 29–37
47 JZhang, Z Zhang. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(16): 2279–2281
https://doi.org/10.1016/j.matlet.2007.11.069
48 S KHaram, A R Mahadeshwar, S G Dixit. Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. Journal of Physical Chemistry, 1996, 100(14): 5868–5873
https://doi.org/10.1021/jp952391n
49 S GDixit, A R Mahadeshwar, S K Haram. Some aspects of the role of surfactants in the formation of nanoparticles. Colloid Surface A, 1998, 133(1–2): 69–75
https://doi.org/10.1016/S0927-7757(97)00126-X
50 PRoy, S K Srivastava. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8–9): 1693–1697
https://doi.org/10.1016/j.matlet.2006.07.101
51 FLi, J F Wu, Q H Qin, Z Li, X THuang. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology, 2010, 198(2): 267– 274
https://doi.org/10.1016/j.powtec.2009.11.018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed