Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (4): 579-594   https://doi.org/10.1007/s11705-018-1770-3
  本期目录
Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study
Alireza Hadi1, Javad Karimi-Sabet2(), Abolfazl Dastbaz1
1. Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
2. Material and Nuclear Fuel Research School (MNFRS), Nuclear Science and Technology Research Institute, Tehran, Iran
 全文: PDF(2602 KB)   HTML
Abstract

The room temperature synthesis of ZIF-8 micro- and nano-particles was investigated using a mixed methanol-water solvent system. ZIF-8 particles of good quality and high crystallinity were obtained. Response surface methodology was used to determine the effect of the synthesis conditions on the ZIF-8 yield, particle size distribution, and mean particle size. The ligand/metal salt molar ratio followed by the amount of sodium formate (the deprotonating agent) and then the amount of water (i.e., the composition of the mixed solvent) respectively had the largest effects on both the ZIF-8 yield and particle size. Results showed that mixing of solvents with different strengths in producing ZIF-8 crystals is a practical method to size-controlled synthesis of ZIF-8 particles. This method is more favorable for industrial-scale ZIF-8 synthesis than using excess amounts of ligands or chemical additives (like sodium formate). In addition, ZIF-8 samples with different mean particle sizes (100, 500, and 1000 nm) were used for CO adsorption and the mid-sized ZIF-8 particles had the highest adsorption capacity.

Key wordsmetal organic frameworks    zeolitic imidazolate frameworks    ZIF-8    response surface methodology    Box Behnken design    CO adsorption
收稿日期: 2018-04-18      出版日期: 2020-05-22
Corresponding Author(s): Javad Karimi-Sabet   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 579-594.
Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1770-3
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I4/579
Fig.1  
Coded values 2-MeIM molar ratio
(A)
Sodium formate molar ratio
(B)
Water /vol-%
(C)
?1 2 0 0
0 5 2 25
+1 8 4 50
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
BET parameters BET analysis
c Vm/(cm3(STP)?g–1) Surface area aS BET /(m2?g–1) Total pore volume (p/p0 = 0.99) /(cm3?g–1) Mean pore diameter/ nm
1798.8 279.5 1216.5 0.5302 1.7434
Tab.2  
Fig.7  
Fig.8  
Experiment No. Un-coded factors Responses
A: 2-MeIM molar content /xa) B: Sodium formate molar content /ya) C: Water volume percent /vol-% Yield /wt-% Particle size /nm
1 8 2 50 7.87 83.4
2 5 2 25 11.31 125.3
3 5 4 50 51.89 185.6
4 5 4 0 48.81 574.8
5 8 2 0 65.54 242.8
6 2 4 25 6.64 687.2
7 8 0 25 11.07 93.98
8 2 2 50 8.11 3876.0
9 5 2 25 12.17 126.3
10 5 0 0 63.56 84.5
11 8 4 25 13.52 116.5
12 5 0 50 48.20 191.3
13 5 2 25 11.68 177.0
14 2 0 25 5.23 706.8
15 2 2 0 1.72 3051.0
Tab.3  
Response Reduced model R2 Radj 2
ZIF-8 yield Yield= +11.72+ 15.89 A – 2.76 B – 3.07 C – 16.02 AC+ 4.61 BC – 17.46 A2 + 14.85 B2 + 26.55 C2 + 3.73 A2B – 9.75 A2C – 12.71 AB2 1.000 0.9997
ZIF-8 mean particle size Particle size= +142.87 – 1462.55 A+ 121.15 B – 70.60 C – 124.0 BC+ 1000.08 A2– 741.82 B2 + 858.01 C2– 120.42 A2B+ 424.65 A2C+ 1166.67 AB2 0.9999 0.9993
Tab.4  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
1 H Furukawa, K E Cordova, M O’Keeffe, O M Yaghi. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149): 1–12
2 D Farrusseng. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage. Hoboken:Weinheim Wiley-VCH, 2011
3 V F Cheong, P Y Moh. Recent advancement in metal–organic framework: Synthesis, activation, functionalisation, and bulk production. Materials Science and Technology, 2018, 34(9): 1025–1045
4 D Yan, G O Lloyd, A Delori, W Jones, X Duan. Tuning fluorescent molecules by inclusion in a metal-organic framework: An experimental and computational study. ChemPlusChem, 2012, 77(12): 1112–1118
5 M Kurmoo. Magnetic metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1353–1379
6 C F Zhang, L G Qiu, F Ke, Y J Zhu, Y P Yuan, G S Xu, X Jiang. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(45): 14329–14334
7 Y N Wu, M Zhou, S Li, Z Li, J Li, B Wu, G Li, F Li, X Guan. Magnetic metal-organic frameworks: g-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14): 2737–2962
8 K A Lin, H A Chang, C J Hsu. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Advances, 2015, 5(41): 32520–32530
9 S Kayal, B Sun, A Chakraborty. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 2015, 91: 772–781
10 J Ren, N M Musyoka, H W Langmi, B C North, M Mathe, X Kang, S Liao. Hydrogen storage in Zr-fumarate MOF. International Journal of Hydrogen Energy, 2015, 40(33): 10542–10546
11 N Jusoh, Y F Yeong, W L Cheong, K K Lau, A M Shariff. Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture. Journal of Industrial and Engineering Chemistry, 2016, 44: 164–173
12 I Erucar, S Keskin. Computational assessment of MOF membranes for CH4/H2 separations. Journal of Membrane Science, 2016, 514: 313–321
13 E Adatoz, A K Avci, S Keskin. Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 2015, 152: 207–237
14 V M A Melgar, H Ahn, J Kim, M R Othman. Highly selective micro-porous ZIF-8 membranes prepared by rapid electrospray deposition. Journal of Industrial and Engineering Chemistry, 2015, 21: 575–579
15 M Sarfraz, M Ba-Shammakh. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. Journal of Industrial and Engineering Chemistry, 2016, 36: 154–162
16 Y Wang, C Li, F Meng, S Lv, J Guo, X Liu, C Wang, Z Ma. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345
17 G H Dang, H Q Lam, A T Nguyen, D T Le, T Truong, N T S Phan. Synthesis of indolizines through aldehyde-amine-alkyne couplings using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 337: 167–176
18 J Liu, L Chen, H Cui, J Zhang, L Zhang, C Y Su. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 2014, 43(16): 6011–6061
19 Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
20 Q L Li, J P Wang, W C Liu, X Y Zhuang, J Q Liu, G L Fan, B H Li, W N Lin, J H Man. A new (4,8)-connected topological MOF as potential drug delivery. Inorganic Chemistry Communications, 2015, 55: 8–10
21 B Singco, L Liu, Y Chen, Y H Shih, H Y Huang, C H Lin. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 223: 254–260
22 E Barea, C Montoro, J A R Navarro. Toxic gas removal—metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 2014, 43(16): 5419–5430
23 M S Hosseini, S Zeinali, M H Sheikhi. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sensors and Actuators. B, Chemical, 2016, 230: 9–16
24 W Li, X Wu, N Han, J Chen, X Qian, Y Deng, W Tang, Y Chen. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors and Actuators. B, Chemical, 2016, 225: 158–166
25 K M Wang, L Du, Y L Ma, Q H Zhao. Selective sensing of 2,4,6-trinitrophenol and detection of the ultralow temperature based on a dual-functional MOF as a luminescent sensor. Inorganic Chemistry Communications, 2016, 68: 45–49
26 L Wang, Y Han, X Feng, J Zhou, P Qi, B Wang. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307: 361–381
27 Y Zhang, Y B Niu, T Liu, Y T Li, M Q Wang, J Hou, M Xu. A nickel-based metal-organic framework: A novel optimized anode material for Li-ion batteries. Materials Letters, 2015, 161: 712–715
28 K S Park, Z Ni, A P Côté, J Y Choi, R Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
29 M Tu, C Wiktor, C Rosler, R A Fischer. Rapid room temperature syntheses of zeoliticimidazolate framework (ZIF) nanocrystals. Chemical Communications, 2014, 50: 13258–13260
30 A S Munn, P W Dunne, S V Y Tang, E H Lester. Large-scale continuous hydrothermal production and activation of ZIF-8. Chemical Communications, 2015, 51: 12811–12814
31 J Cravillon, C A Schröder, H Bux, A Rothkirch, J Caro, M Wiebcke. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498
32 H Y Cho, J Kim, S N Kim, W S Ahn. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184
33 T Friščić, I Halasz, P J Beldon, A M Belenguer, F Adams, S A J Kimber, V Honkimäki, R E Dinnebier. Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5: 66–73
34 A M Joaristi, J J Alcañiz, P S Crespo, F Kapteijn, J Gascon. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012, 12(7): 3489–3498
35 Q Shi, Z Chen, Z Song, J Li, J Dong. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angewandte Chemie International Edition, 2010, 50(3): 672–675
36 W Liu, Y Zhao, C Zeng, C Wang, C A Serra, L Zhang. Microfluidic preparation of yolk/shell ZIF-8/alginate hybrid microcapsules from Pickering emulsion. Chemical Engineering Journal, 2017, 307: 408–417
37 V V Butova, A P Budnik, E A Bulanova, A V Soldatov. New microwave-assisted synthesis of ZIF-8. Mendeleev Communications, 2016, 26(1): 43–44
38 A Schejn, L Balan, V Falk, L Aranda, G Medjahdi, R Schneider. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014, 16(21): 4493–4500
39 J Zhou, X Yu, X Fan, X Wang, H Li, Y Zhang, W Li, J Zheng, B Wang, X Li. The impact of the particle size of a metal-organic framework for sulfur storage in Li–S batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8272–8275
40 O M Linder-Patton, W M Bloch, C J Coghlan, K Sumida, S Kitagawa, S Furukawa, C J Doonana, C J Sumby. Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF CrystEngComm, 2016, 18(22): 4172–4179
41 N A H M Nordin, A F Ismail, A Mustafa, R S Murali, T Matsuura. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Advances, 2014, 4(94): 52530–52541
42 Y Ban, Y Li, X Liu, Y Peng, W Yang. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. Microporous and Mesoporous Materials, 2013, 173: 29–36
43 J Cravillon, R Nayuk, S Springer, A Feldhoff, K Huber, M Wiebcke. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141
44 D Peralta, G Chaplais, A Simon-Masseron, K Barthelet, G D Pirngruber. Synthesis and adsorption properties of ZIF-76 isomorphs. Microporous and Mesoporous Materials, 2012, 153: 1–7
45 A Polyzoidis, T Altenburg, M Schwarzer, S Loebbecke, S Kaskel. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chemical Engineering Journal, 2016, 283: 971–977
46 M Jian, B Liu, R Liu, J Qu, H Wang, X Zhang. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 2015, 5(60): 48433–48441
47 W S Chi, S Hwang, S J Lee, S Park, Y S Bae, D Y Ryu, J H Kim, J Kim. Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture. Journal of Membrane Science, 2015, 495: 479–488
48 J Cravillon, S Münzer, S J Lohmeier, A Feldhoff, K Huber, M Wiebcke. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412
49 C Zhang, R P Lively, K Zhang, J R Johnson, O Karvan, W J Koros. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. Journal of Physical Chemistry Letters, 2012, 3(16): 2130–2134
50 M A Bezerra, R Erthal, S Eliane, P Oliveira, L Silveira, V Luciane, A Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5): 965–977
51 N A Talib, F Salam, N A Yusof, S A A Ahmad, Y Sulaiman. Optimization of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 2017, 7(18): 11101–11110
52 N A H M Nordin, A F Ismail, A Mustafa, P S Goh, D Rana, T Matsuura. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Advances, 2014, 4(63): 33292–33300
53 J B James, Y S Lin. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing and reducing environments. Journal of Physical Chemistry C, 2016, 120(26): 14015–14026
54 L S Lai, Y F Yeong, K K Lau, M S Azmi. Zeolite imidazole frameworks membranes for CO2/CH4 separation from natural gas: A review. Journal of Applied Sciences (Faisalabad), 2014, 14(11): 1161–1167
55 J J Beh, J K Lim, E P Ng, B S Ooi. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Materials Chemistry and Physics, 2018, 216: 393–401
56 S Tanaka, K Kida, M Okita, Y Ito, Y Miyake. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41: 1337–1339
57 K Kida, M Okita, K Fujita, S Tanaka, Y Miyake. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794–1801
58 C P Li, M Du. Role of solvents in coordination supramolecular systems. Chemical Communications, 2011, 47(21): 5958–5972
59 E L Bustamante, J L Fernández, J M Zamaro. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. Journal of Colloid and Interface Science, 2014, 424: 37–43
60 A Hadi, J Karimi-Sabet, S M A Moosavian, S Ghorbanian. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. Journal of Supercritical Fluids, 2016, 107: 92–105
61 X Fan, J Zhou, T Wang, J Zheng, X Li. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates. RSC Advances, 2015, 5: 58595–58599
62 J E Mondloch, O Karagiaridi, O K Farha, J T Hupp. Activation of metal-organic framework materials. CrystEngComm, 2013, 15: 9258–9264
63 M E Casco, Y Q Cheng, L L Daemen, D Fairen-Jimenez, E V Ramos-Fernández, A J R C J Silvestre-Albero. Gate-opening effect in ZIF-8: The first experimental proof using inelastic neutron scattering. . Chemical Communications (Cambridge), 2016, 52: 3639–3642
[1] FCE-18047-OF-HA_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed