Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (4): 731-744   https://doi.org/10.1007/s11705-018-1772-1
  本期目录
Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing
Petar S. Varbanov1(), Timothy G. Walmsley1, Yee V. Fan1, Jiří J. Klemeš1, Simon J. Perry2
1. Sustainable Process Integration Laboratory, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
2. Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 3AL, UK
 全文: PDF(550 KB)   HTML
Abstract

Waste-to-energy supply chains are important potential contributors to minimising the environmental impacts of municipal solid waste by reducing the amounts of waste sent to landfill, as well as the fossil fuel consumption and environmental footprints. Accounting for the spatial and transport properties of the waste-to-energy supply chains is crucial for understanding the problem and improving the supply chain designs. The most significant challenge is the distributed nature of the waste generation and the household energy demands. The current work proposes concepts and a procedure for targeting the size of the municipal solid waste collection zone as the first step in the waste-to-energy supply chains synthesis. The formulated concepts and the provided case study reveal trends of reducing the net greenhouse gas savings and energy recovery by increasing the collection zone size. Population density has a positive correlation with the greenhouse gas saving and energy recovery performance. For smaller zone size the energy recovery from waste approaches and in some cases may surpass the energy spent on waste transportation. The energy recovery and greenhouse gas savings remain significant even for collection zones as large as 200 km2. The obtained trends are discussed and key directions for future work are proposed.

Key wordswaste-to-energy    supply chain optimisation    GHG savings    energy recovery ratio
收稿日期: 2018-03-22      出版日期: 2019-01-03
Corresponding Author(s): Petar S. Varbanov   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 731-744.
Petar S. Varbanov, Timothy G. Walmsley, Yee V. Fan, Jiří J. Klemeš, Simon J. Perry. Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing. Front. Chem. Sci. Eng., 2018, 12(4): 731-744.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1772-1
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I4/731
Fig.1  
Fig.2  
Fig.3  
No. Identifier Power Output /kW Input /kW NOx
/ppm
Thermal Efficiency Electrical Efficiency CHP Effi-ciency Investment Cost /€ Maintance Cost / (€?y?1)
1 J208 330 851 500 0.485 0.387 0.873 232438 9298
2 J312 637 1565 500 0.449 0.407 0.856 344892 13796
3 J316 850 2086 500 0.448 0.407 0.856 410063 16402
4 J320 1067 2608 500 0.452 0.409 0.861 470000 18800
6 J416 1189 2806 500 0.428 0.424 0.852 501543 20061
7 J420 1487 3508 500 0.428 0.424 0.852 573569 22943
8 J612 1820 4142 500 0.403 0.44 0.843 647503 25900
9 J616 2435 5523 500 0.403 0.441 0.844 771078 30843
10 J620 3047 6904 500 0.403 0.441 0.844 882110 35284
11 J620 ´ 2 6094 13808 500 0.403 0.441 0.844 1764220 70569
12 J920 10400 21181 500 0.406 0.491 0.897 1842550 73702
13 J920 ´ 2 20800 42363 500 0.406 0.491 0.897 3685099 147404
Tab.1  
Population /inhabitants Operating profit/(€?tone-waste?1) Reduced waste collection fee /(€?tone-waste?1) Net GHG saving
/(t?y?1)
Energy used
/(GJ?y?1)
Energy delivered
/(GJ?y?1)
PD → /inhabitants?km?2
ECZ /km2
2500 5000 2500 5000 2500 5000 2500 5000 2500 5000 2500 5000
4 10000 20000 51.64 55.19 68.36 64.81 37.43 85.98 6934 13707 7092 14184
8 20000 40000 53.58 62.78 66.42 57.22 49.49 384.90 14236 28042 14184 27707
10 25000 50000 53.82 62.94 66.18 57.06 51.33 458.82 17948 35376 17730 34634
16 40000 80000 60.53 62.81 59.47 57.19 282.66 648.47 29524 57843 27707 55414
20 50000 100000 60.37 62.48 59.63 57.52 313.53 767.36 37482 73320 34634 68838
32 80000 160000 59.48 61.79 60.52 58.21 347.3 1061.20 62208 120868 55414 109572
40 100000 200000 58.96 61.24 61.04 58.76 368.15 1147.10 79107 153683 68838 136965
60 150000 300000 57.44 60.87 62.56 59.13 269.13 1505.10 123833 238404 102724 209922
80 200000 400000 56.16 59.71 63.84 60.29 ?3.60 1318.30 170363 327852 136965 279897
100 250000 500000 55.73 58.63 64.27 61.37 ?117.13 910.40 218548 420503 174935 349871
120 300000 600000 54.43 57.87 65.57 62.13 ?679.90 475.90 270075 513541 209922 419844
200 500000 1000000 50.69 54.33 69.31 65.67 ?3,586.5 ?3546.70 485686 918808 349871 699740
Tab.2  
Fig.4  
Fig.5  
c^hand/ (€?t?1) Waste handling fee
m^w,gen/(t?ihnabitant?1·y?1) Specific waste generation per individual
chand/(€?y?1) Waste handling cost item
ctrans/(€?y?1) Waste transportation cost item
ECHP/(GJ?y?1) The sum of the heat and power flows generated by the WtE processes
NSGHG/(t?y?1) Net savings of GHG
RSGHG/% Relative GHG Saving
dave/km Average transportation distance
et/(tfuel?twaste?1·km?1) Average truck specific energy consumption
pf /(€?tfuel?1) Price of the transport fuel
A /km2 Area of the ECZ
COP /1 The coefficient of performance (heat pumps)
ERR /1 Energy recovery ratio
FT /(GJ?y?1) Fuel energy for transportation
i, m, n, j Indices for facilities and operating units in the layer model (Fig. 1)
mtot /(t?y?1) Total waste mass flow
Ni, Nm, Nn, Nj Numbers of facilities and operating units within each of the layers in Fig. 1
NOx /ppm Oxides of nitrogen (content)
Pden, PD/ihnabitants per km2 Population density
r /km The radius of the ECZ
TC / (€?y?1) Overall waste transportation cost
β /1 Additional transport distance performance coefficient
  
1 TNagy, P Mizsey. Model verification and analysis of the CO2-MEA absorber–desorber system. International Journal of Greenhouse Gas Control, 2015, 39: 236–244
https://doi.org/10.1016/j.ijggc.2015.05.017
2 Y VFan, P S Varbanov, J J Klemeš, A Nemet. Process efficiency optimisation and integration for cleaner production. Journal of Cleaner Production, 2018, 174: 177–183
https://doi.org/10.1016/j.jclepro.2017.10.325
3 ZFodor, J J Klemeš. Waste as alternative fuel—Minimising emissions and effluents by advanced design. Process Safety and Environmental Protection, 2012, 90(3): 263–284
https://doi.org/10.1016/j.psep.2011.09.004
4 IBoumanchar, Y Chhiti, F E M HAlaoui, AEl Ouinani, ASahibed-Dine, FBentiss, CJama, M Bensitel. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste Management (New York, N.Y.), 2017, 61: 78–86
https://doi.org/10.1016/j.wasman.2016.11.012
5 SDas, B K Bhattacharyya. Optimization of municipal solid waste collection and transportation routes. Waste Management (New York, N.Y.), 2015, 43: 9–18
https://doi.org/10.1016/j.wasman.2015.06.033
6 YZhang, G H Huang, L He. A multi-echelon supply chain model for municipal solid waste management system. Waste Management (New York, N.Y.), 2014, 34(2): 553–561
https://doi.org/10.1016/j.wasman.2013.10.002
7 FCucchiella, I D’Adamo, MGastaldi. Sustainable management of waste-to-energy facilities. Renewable & Sustainable Energy Reviews, 2014, 33: 719–728
https://doi.org/10.1016/j.rser.2014.02.015
8 ZXu, A Elomri, SPokharel, QZhang, X GMing, WLiu. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint. Waste Management (New York, N.Y.), 2017, 64: 358–370
https://doi.org/10.1016/j.wasman.2017.02.024
9 DLongden, J Brammer, LBastin, NCooper. Distributed or centralised energy-from-waste policy? Implications of technology and scale at municipal level. Energy Policy, 2007, 35(4): 2622–2634
https://doi.org/10.1016/j.enpol.2006.09.013
10 MGandy. Political conflict over waste-to-energy schemes. Land Use Policy, 1995, 12(1): 29–36
https://doi.org/10.1016/0264-8377(95)90072-A
11 F J CPirotta, E CFerreira, C ABernardo. Energy recovery and impact on land use of Maltese municipal solid waste incineration. Energy, 2013, 49: 1–11
https://doi.org/10.1016/j.energy.2012.10.049
12 GMavrotas, N Gakis, SSkoulaxinou, VKatsouros, EGeorgopoulou. Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions. Renewable & Sustainable Energy Reviews, 2015, 51: 1205–1222
https://doi.org/10.1016/j.rser.2015.07.029
13 PStasta, J Boran, LBébar, PStehlík, JOral. Thermal processing of sewage sludge. Applied Thermal Engineering, 2006, 26(13): 1420–1426
https://doi.org/10.1016/j.applthermaleng.2005.05.030
14 BKilkovsky, P Stehlík, ZJegla, L LTovazhnyansky, OArsenyeva, P OKapustenko. Heat exchangers for energy recovery in waste and biomass to energy technologies—I. Energy recovery from flue gas. Applied Thermal Engineering, 2015, 64(1-2): 213–223
https://doi.org/10.1016/j.applthermaleng.2013.11.041
15 J DMurphy, E McKeogh. Technical, economic and environmental analysis of energy production from municipal solid waste. Renewable Energy, 2004, 29(7): 1043–1057
https://doi.org/10.1016/j.renene.2003.12.002
16 K MNazmul Islam. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh. Science of the Total Environment, 2017, 580: 755–769
https://doi.org/10.1016/j.scitotenv.2016.12.022
17 GTavares, Z Zsigraiová, VSemiao. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Management (New York, N.Y.), 2011, 31(9-10): 1960–1972
https://doi.org/10.1016/j.wasman.2011.04.013
18 FMurphy, A Sosa, KMcDonnell, GDevlin. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy, 2016, 109: 1040–1055
https://doi.org/10.1016/j.energy.2016.04.125
19 RŠomplák, VNevrlý, VSmejkalová, MPavlas, JKůdela. Verification of information in large databases by mathematical programming in waste management. Chemical Engineering Transactions, 2017, 61: 985–990
20 T GWalmsley, P S Varbanov, J J Klemeš. Networks for utilising the organic and dry fractions of municipal waste: P-graph approach. Chemical Engineering Transactions, 2017, 61: 1357–1362
21 MNelles, J Grünes, GMorscheck. Waste management in Germany—Development to a sustainable circular economy? Procedia Environmental Sciences, 2016, 35: 6–14
https://doi.org/10.1016/j.proenv.2016.07.001
22 RDekker, M Fleischmann, KInderfurth, LNWassenhove. Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer Science & Business Media, 2013
23 CChalkias, K Lasaridi. Benefits from GIS Based Modelling for Municipal Solid Waste Management. In: Kumar S, ed. Integrated Waste Management—Vol I. London: InTech, 2011, DOI 10.5772/17087
24 Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste, Official Journal L 182, 16/07/1999, 0001–0019.
25 WPeng, A Pivato. Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste and Biomass Valorization, 2017,
https://doi.org/10.1007/s12649-017-0071-2
26 FFriedler, J B Varga, E Fehér, L TFan. Combinatorially accelerated branch-and-bound method for solving the MIP model of process network synthesis. In: Floudas C A, Pardalos P M, eds. State of the Art in Global Optimization. Massachusetts, USA: Kluwer Academic Publishers, 1996, 609–626
27 ZKravanja. Challenges in sustainable integrated process synthesis and the capabilities of a MINLP process synthesizer MipSyn. Computers & Chemical Engineering, 2010, 34(11): 1831–1848
https://doi.org/10.1016/j.compchemeng.2010.04.017
28 LBranchini. Municipal waste overview In: Waste-to-Energy, Chapter 2. Switzerland: Springer International Publishing, 2015, 7–17
29 P SVarbanov, H L Lam, F Friedler, J JKlemeš. Energy generation and carbon footprint of waste to energy. Centralised vs. distributed processing. Computer-Aided Chemical Engineering, 2012, 31: 1402–1406
https://doi.org/10.1016/B978-0-444-59506-5.50111-5
30 MBerglund, P Börjesson. Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy, 2006, 30(3): 254–266
https://doi.org/10.1016/j.biombioe.2005.11.011
31 M AJohnston. Managing odors at anaerobic digestion plants. BioCycle, 2017, 58(3): 39
32 S TTan, C T Lee, H Hashim, W SHo, J SLim. Optimal process network for municipal solid waste management in Iskandar Malaysia. Journal of Cleaner Production, 2014, 71: 48–58
https://doi.org/10.1016/j.jclepro.2013.12.005
33 MPavlas, R Šomplák, VSmejkalová, VNevrlý, LSzásziová, JKůdela, PPopela. Spatially distributed production data for supply chain models—Forecasting with hazardous waste. Journal of Cleaner Production, 2017, 161: 1317–1328
https://doi.org/10.1016/j.jclepro.2017.06.107
34 VNevrlý, R Šomplák, JGregor, MPavlas, JKlemeš. Impact on the Population from the Transportation of Waste based on Emission Models. In: Proceedings of SDEWES 2017—12th Conference on Sustainable Development of Energy, Water and Environmental Systems. Zagreb: Faculty of Mechanical Engineering and Naval Architecture, 2017, 1‒14
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed