Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition
Ana Mora-Boza1, Francisco J. Aparicio1(), María Alcaire1, Carmen López-Santos1, Juan P. Espinós1, Daniel Torres-Lagares2, Ana Borrás1, Angel Barranco1()
1. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) c/Américo Vespucio 49, 41092 Sevilla, Spain 2. Facultad de Odontología, Universidad de Sevilla (USE) c/Avicena, 41009 Sevilla, Spain
Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against Escherichia coli K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.
Corresponding Author(s):
Francisco J. Aparicio,Angel Barranco
引用本文:
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 330-339.
Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
A ACavallaro , M NMacgregor-Ramiasa , KVasilev . Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Applied Materials & Interfaces, 2016, 8(10): 6354–6362 https://doi.org/10.1021/acsami.6b00330
2
MVähä-Nissi, MPitkänen, ESalo, E Kenttä, ATanskanen, TSajavaara, MPutkonen, JSievänen, ASneck, MRättö, MKarppinen, AHarlin. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures. Thin Solid Films, 2014, 562: 331–337 https://doi.org/10.1016/j.tsf.2014.03.068
3
BZhang, D Myers, GWallace, MBrandt, PChoong. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. International Journal of Molecular Sciences, 2014, 15(7): 11878–11921 https://doi.org/10.3390/ijms150711878
4
IBanerjee, R C Pangule, R S Kane. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718 https://doi.org/10.1002/adma.201001215
5
JGilabert-Porres, S Martí, LCalatayud, VRamos, ARosell, SBorrós. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Applied Materials & Interfaces, 2016, 8(1): 64–73 https://doi.org/10.1021/acsami.5b07115
6
FJiang, C K Yeh, J Wen, YSun. N-Trimethylchitosan/alginate layer-by-layer self assembly coatings act as ‘fungal repellents’ to prevent biofilm formation on healthcare materials. Advanced Healthcare Materials, 2015, 4(3): 469–475 https://doi.org/10.1002/adhm.201400428
7
LLi, T Pu, GZhanel, NZhao, W Ens, SLiu. New biocide with both n-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 2012, 1(5): 609–620 https://doi.org/10.1002/adhm.201200018
8
MWu, J He, XRen, W SCai, Y CFang, X ZFeng. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 700–706 https://doi.org/10.1016/j.colsurfb.2013.11.010
AAgarwal, T B Nelson, P R Kierski, M J Schurr, C J Murphy, C J Czuprynski, J F McAnulty, N L Abbott. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33(28): 6783–6792 https://doi.org/10.1016/j.biomaterials.2012.05.068
11
THe, Y Zhang, A C KLai, VChan. Engineering bio-adhesive functions in an antimicrobial polymer multilayer. Biomedical Materials (Bristol, England), 2015, 10(1): 15015 https://doi.org/10.1088/1748-6041/10/1/015015
12
EVerraedt, A Braem, AChaudhari, KThevissen, EAdams, LVan Mellaert, B P ACammue, JDuyck, JAnné, JVleugels, J AMartens. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419(1-2): 28–32 https://doi.org/10.1016/j.ijpharm.2011.06.053
13
QYu, W Ge, AAtewologun, A DStiff-Roberts, G PLópez. Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 328–334 https://doi.org/10.1016/j.colsurfb.2014.12.043
14
C HChang, S Y Yeh, B H Lee, C W Hsu, Y C Chen, C J Chen, T J Lin, M H C Chen, C T Huang, H Y Chen. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(48): 8496–8503 https://doi.org/10.1039/C4TB00992D
15
A YNikiforov, XDeng, I Onyshchenko, DVujosevic, VVuksanovic, UCvelbar, NDe Geyter, RMorent, CLeys. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. European Physical Journal Applied Physics, 2016, 75(2): 24710 https://doi.org/10.1051/epjap/2016150537
16
KOstrikov, I Levchenko, MKeidar, UCvelbar, DMariotti, AMai-Prochnow, JFang. Novel biomaterials: Plasma-enabled nanostructures and functions. Journal of Physics. D, Applied Physics, 2016, 49(27): 273001 https://doi.org/10.1088/0022-3727/49/27/273001
ABarranco , F Aparicio , AYanguas-Gil , PGroening , JCotrino , A RGonzález-Elipe . Optically active thin films deposited by plasma polymerization of dye molecules. Chemical Vapor Deposition, 2007, 13(6-7): 319–325 https://doi.org/10.1002/cvde.200606552
19
F JAparicio, M Holgado, ABorras, IBlaszczyk-Lezak, AGriol, C ABarrios, RCasquel, F JSanza, HSohlstrom, MAntelius, A RGonzález-Elipe, ABarranco. Transparent nanometric organic luminescent films as UV-active components in photonic structures. Advanced Materials, 2011, 23(6): 761–765 https://doi.org/10.1002/adma.201003088
20
F JAparicio, M Alcaire, A RGonzález-Elipe, ABarranco, MHolgado, RCasquel, F JSanza, AGriol, DBernier, FDortu, SCáceres, MAntelius, MLapisa, HSohlström, FNiklaus. Dye-based photonic sensing systems. Sensors and Actuators. B, Chemical, 2016, 228: 649–657 doi: https://doi.org/10.1016/j.snb.2016.01.092
21
IBlaszczyk-Lezak, F J Aparicio, A Borrás, ABarranco, AÁlvarez-Herrero, MFernández-Rodríguez, A RGonzález-Elipe. Optically active luminescent perylene thin films deposited by plasma polymerization. Journal of Physical Chemistry C, 2009, 113(1): 431–438 https://doi.org/10.1021/jp807634j
22
F JAparicio, M Alcaire, ABorras, J CGonzalez, FLópez-Arbeloa, IBlaszczyk-Lezak, A RGonzález-Elipe, ABarranco. Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(32): 6561–6573 https://doi.org/10.1039/C4TC00294F
23
KSangamesh, C Laurencin, MDeng, eds. Natural and Synthetic Biomedical Polymers. San Diego: Elsevier, 2014, 301–308
PThevenot, W Hu, LTang. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8(4): 270–280 https://doi.org/10.2174/156802608783790901
26
PGilbert, D G Allison, M Brading, JVerran, JWalker. Biofilm community interactions: Chance or necessity? Cardiff: Bioline, 2001, 11–22
27
C JWilson, R E Clegg, D I Leavesley, M J Pearcy. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11(1-2): 1–18 https://doi.org/10.1089/ten.2005.11.1
28
HZhang, M Chiao. Anti-fouling Coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 2014, 35(2): 143–155 https://doi.org/10.1007/s40846-015-0029-4
29
B JLarson, S D Gillmor, J M Braun, L E Cruz-Barba, D E Savage, F S Denes, M G Lagally. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir, 2013, 29(42): 12990–12996 https://doi.org/10.1021/la403077q
30
SForster, S L McArthur. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. Biomicrofluidics, 2012, 6(3): 036504 https://doi.org/10.1063/1.4754600
31
DLee, S Yang. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators. B, Chemical, 2012, 162(1): 425–434 https://doi.org/10.1016/j.snb.2011.12.017
D KOwens, R C Wendt. Estimation of the surface free energy or polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747 https://doi.org/10.1002/app.1969.070130815
34
MBalouiri, M Sadiki, S KIbnsouda. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79 https://doi.org/10.1016/j.jpha.2015.11.005
35
L BMestieri, A L Gomes-Cornélio, E M Rodrigues, G Faria, J MGuerreiro-Tanomaru, MTanomaru-Filho. Cytotoxicity and bioactivity of calcium silicate cements combined with niobium oxide in different cell lines. Brazilian Dental Journal, 2017, 28(1): 65–71 https://doi.org/10.1590/0103-6440201700525
36
F JAparicio, A Borras, IBlaszczyk-Lezak, PGröning, AÁlvarez-Herrero, MFernández-Rodríguez, A RGonzález-Elipe, ABarranco. Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6(1): 17–26 https://doi.org/10.1002/ppap.200800092
37
F JAparicio, I Blaszczyk-Lezak, J RSánchez-Valencia, MAlcaire, J CGonzález, CSerra, A RGonzález-Elipe, ABarranco. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. Journal of Physical Chemistry C, 2012, 116(15): 8731–8740 https://doi.org/10.1021/jp209272s
38
GBeamson , D Briggs . High Resolution XPS of Organic Polymers. New York: John Wiley & Sons Ltd., 1990, 277–287
39
J HYim, M S Fleischman, V Rodriguez-Santiago, L TPiehler, A AWilliams, J LLeadore, D DPappas. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Applied Materials & Interfaces, 2013, 5(22): 11836–11843 https://doi.org/10.1021/am403503a
40
J YYook, M Lee, K HSong, JJun, S Kwak. Surface modification of poly(ethylene-2,6-naphthalate) using NH3 plasma. Macromolecular Research, 2014, 22(5): 534–540 https://doi.org/10.1007/s13233-014-2093-y
41
F JAparicio, D Thiry, PLaha, RSnyders. Wide range control of the chemical composition and optical properties of propanethiol plasma polymer films by regulating the deposition temperature. Plasma Processes and Polymers, 2016, 13(8): 814–822 https://doi.org/10.1002/ppap.201500212
42
HJiang, J T Grant, J Enlow, WSu, T JBunning. Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19(15): 2234–2239 https://doi.org/10.1039/b816814h
43
GSokrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. New York: Wiley-Interscience, 2001, 191–198
44
AKovtun, D Kozlova, KGanesan, CBiewald, NSeipold, PGaengler, W HArnold, MEpple. Chlorhexidine-loaded calcium phosphatenanoparticles for dental maintenance treatment: Combination of mineralising and antibacterial effects. RSC Advances, 2012, 2(3): 870–875 https://doi.org/10.1039/C1RA00955A
45
MBadea, R Olar, MIliş, RGeorgescu, MCălinescu. Synthesis, characterization, and thermal decomposition of new copper (II) complex compounds with chlorhexidine. Journal of Thermal Analysis and Calorimetry, 2012, 111(3): 1763–1770 https://doi.org/10.1007/s10973-012-2316-4
46
SPal, Y K Tak, E Han, SRangasamy, J MSong. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New Journal of Chemistry, 2014, 38(8): 3889–3898 https://doi.org/10.1039/C4NJ00160E
CLabay, J M Canal, M Modic, UCvelbar, MQuiles, MArmengol, M AArbos, F JGil, CCanal. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71: 132–144 https://doi.org/10.1016/j.biomaterials.2015.08.023