Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (4): 595-604   https://doi.org/10.1007/s11705-019-1818-z
  本期目录
One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries
Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu()
Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai 264209, China
 全文: PDF(1963 KB)   HTML
Abstract

A facile one-step hydrothermal method has been adopted to directly synthesize the CuCo2S4 material on the surface of Ni foam. Due to the relatively large specific surface area and wide pore size distribution, the CuCo2S4 material not only effectively increases the reactive area, but also accommodates more side reaction products to avoid the difficulty of mass transfer. When evaluated as anode for Li-ion batteries, the CuCo2S4 material exhibits excellent electrochemical performance including high discharge capacity, outstanding cyclic stability and good rate performance. At the current density of 200 mA·g−1, the CuCo2S4 material shows an extremely high initial discharge capacity of 2510 mAh·g−1, and the cycle numbers of the material even reach 83 times when the discharge capacity is reduced to 500 mAh·g−1. Furthermore, the discharge capacity can reach 269 mAh·g−1 at a current of 2000 mA·g−1. More importantly, when the current density comes back to 200 mA·g−1, the discharge capacity could be recovered to 1436 mAh·g−1, suggesting an excellent capacity recovery characteristics.

Key wordscopper cobalt sulfide    recoverability    one-step hydrothermal method    anode material    Li-ion battery
收稿日期: 2018-10-19      出版日期: 2020-05-22
Corresponding Author(s): Yongming Zhu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 595-604.
Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1818-z
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I4/595
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Rs /(Ω·cm−2) Rf /(Ω·cm−2) Rct /(Ω·cm−2) Zw /(Ω·cm−2)
1st 9.64 10.25 28.80 8.11´ 10−2
5th 8.33 5.49 26.14 2.29´ 10−4
10th 7.12 5.17 31.75 2.50´ 10−3
20th 12.77 40.27 38.15 1.24´ 10−2
50th 34.72 47.83 104.22 3.51´ 10−1
Tab.1  
1 J B Goodenough, K S Park. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438
2 N Loeffler, D Bresser, S Passerini. Secondary lithium-ion battery anodes: From first commercial batteries to recent research activities. Platinum Metals Review, 2015, 59(1): 34–44
3 S Goriparti, E Miele, F De Angelis, E Di Fabrizio, R P Zaccaria, C Capiglia. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257(3): 421–443
https://doi.org/10.1016/j.jpowsour.2013.11.103
4 L Lu, X Han, J Li, J Hua, M Ouyang. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226(3): 272–288
https://doi.org/10.1016/j.jpowsour.2012.10.060
5 P G Bruce, B Scrosati, J M Tarascon. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2010, 47(16): 2930–2946
https://doi.org/10.1002/anie.200702505
6 J Mei, T Liao, Z Sun. Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of Energy Chemistry, 2018, 27(1): 117–127
https://doi.org/10.1016/j.jechem.2017.10.012
7 J Zhang, A Yu. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Science Bulletin, 2015, 60(9): 823–838
https://doi.org/10.1007/s11434-015-0771-6
8 X Chen, K Sun. 3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries. Huaxue Jinzhan, 2011, 23(10): 2045–2054
9 P Wang, Y Zhang, B Guan, L Fan, N Zhang, K Sun. Fabrication of CuCo2S4 hollow sphere @N/S doped graphene composites as high performance anode materials for lithium ion batteries. Ceramics International, 2018, 44(10): 11905–11909
https://doi.org/10.1016/j.ceramint.2018.03.191
10 Y Zhao, X Li, B Yan, D Xiong, D Li, S Lawes, X Sun. Recent developments and understanding of novel mixed transition metal oxides as anodes in lithium ion batteries. Advanced Energy Materials, 2016, 6(8): 1502175
https://doi.org/10.1002/aenm.201502175
11 J Mao, X Hou, X Wang, S Hu, L Xiang. The cubic aggregated CoFe2O4 nanoparticle anode material for lithium ion battery with good performance. Materials Letters, 2015, 161: 652–655
https://doi.org/10.1016/j.matlet.2015.08.102
12 F Niu, N Wang, J Yue, L Chen, J Yang, Y Qian. Hierarchically porous CuCo2O4 microflowers: A superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 batteries. Electrochimica Acta, 2016, 208: 148–155
https://doi.org/10.1016/j.electacta.2016.05.026
13 X Leng, Y Shao, S Wei, Z Jiang, J Lian, G Wang, Q Jiang. Ultrathin mesoporous NiCo2O4 nanosheet networks as high performance anodes for lithium storage. ChemPlusChem, 2015, 80(12): 1725–1731
https://doi.org/10.1002/cplu.201500322
14 Y Qiu, S Yang, H Deng, L Jin, W Li. A novel nanostructured spinel ZnCo2O4 electrode material: Morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. Journal of Materials Chemistry, 2010, 20(21): 4439–4444
https://doi.org/10.1039/c0jm00101e
15 X Rui, H Tan, Q Yan. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6(17): 9889–9924
https://doi.org/10.1039/C4NR03057E
16 X Yu, L Yu, X Lou. Metal sulfide hollow nanostructures for electrochemical energy storage. Advanced Energy Materials, 2016, 6(3): 1501333
https://doi.org/10.1002/aenm.201501333
17 D Yu, Y Yuan, D Zhang, D Zhang, S Yin, J Lin, Z Rong, J Yang, Y Chen, S Guo. Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochimica Acta, 2016, 198: 280–286
https://doi.org/10.1016/j.electacta.2016.01.189
18 Q Ren, C Liu, Z Wang, K Ke, S Zhang, B Yin. 3D NiCo2S4 nanorod arrays as electrode materials for electrochemical energy storage application. Ceramics International, 2016, 42(16): 18173–18180
https://doi.org/10.1016/j.ceramint.2016.08.133
19 J Tang, Y Ge, J Shen, M Ye. Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chemical Communications, 2015, 52(7): 1509–1512
https://doi.org/10.1039/C5CC09402J
20 A T A Ahmed, H S Chavan, Y Jo, S Cho, J Kim, S M Pawar, J L Gunjakar, A I Inamdar, H Kim, H Im. One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance. Journal of Alloys and Compounds, 2017, 724: 744–751
https://doi.org/10.1016/j.jallcom.2017.07.076
21 T Wang, M Liu, H Ma. Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials (Basel, Switzerland), 2017, 7(6): 140
https://doi.org/10.3390/nano7060140
22 S E Moosavifard, S Fani, M Rahmanian. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chemical Communications, 2016, 52(24): 4517–4520
https://doi.org/10.1039/C6CC00215C
23 Y Wang, D Yang, T Zhou, J Pan, T Wei, Y Sun. Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor. Nanotechnology, 2017, 28(46): 465402
https://doi.org/10.1088/1361-6528/aa8d85
24 R Verma, R Kothandaraman, U V Varadaraju. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications. Applied Surface Science, 2017, 418: 30–39
https://doi.org/10.1016/j.apsusc.2016.11.165
25 J G Wang, D Jin, R Zhou, C Shen, B Wei. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016, 306: 100–106
https://doi.org/10.1016/j.jpowsour.2015.12.014
26 Y Zhang, S Ouyang, Q Yu, P Li, J Ye. Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. Chemical Communications, 2015, 51(74): 14057–14059
https://doi.org/10.1039/C5CC04812E
27 P Guo, H Song, Y Liu, C Wang. CuFeS2 quantum dots anchored in carbon frame: Superior lithium storage performances and the study of electrochemical mechanism. ACS Applied Materials & Interfaces, 2017, 9(37): 31752–31762
https://doi.org/10.1021/acsami.7b06685
28 P Wang, Y Zhang, Y Yin, L Fan, N Zhang, K Sun. In-situ synthesis of CuCo2S4@N/S doped graphene composites with pseudocapacitive properties for high performance lithium ion batteries. ACS Applied Materials & Interfaces, 2018, 10(14): 11708–11714
https://doi.org/10.1021/acsami.8b00632
29 C Zhu, D Wen, S Leubner, M Oschatz, W Liu, M Holzschuh, F Simon, S Kaskel, A Eychmuller. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2015, 51(37): 7851–7854
https://doi.org/10.1039/C5CC01558H
30 L Yang, L Xie, X Ren, Z Wang, Z Liu, G Du, A M Asiri, Y Yao, X Sun. Hierarchical CuCo2S4 nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chemical Communications, 2017, 54(1): 78–81
https://doi.org/10.1039/C7CC07259G
31 A K Mondal, D Su, S Chen, X Xie, G Wang. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Applied Materials & Interfaces, 2014, 6(17): 14827–14835
https://doi.org/10.1021/am5036913
32 N Nitta, F Wu, J T Lee, G Yushin. Li-ion battery materials: Present and future. Materials Today, 2015, 18(5): 252–264
https://doi.org/10.1016/j.mattod.2014.10.040
33 R Jin, L Yang, G Li, G Chen. Hierarchical worm-like CoS composed of ultrathin nanosheets as an anode material for lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(20): 10677–10680
https://doi.org/10.1039/C5TA02646F
34 J Cheng, Y Pan, J Zhu, Z Li, J Pan, Z Ma. Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries. Journal of Power Sources, 2014, 257(2): 192–197
https://doi.org/10.1016/j.jpowsour.2014.01.124
35 S Liu, S Zhang, Y Xing, S Wang, R Lin, X Wei, L He. Facile synthesis of hierarchical mesoporous CuxCo3–xO4 material array on conductive substrates with high-rate performance for Li-ion batteries. Electrochimica Acta, 2014, 150: 75–82
https://doi.org/10.1016/j.electacta.2014.10.131
36 L Liu. Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors. Nanoscale, 2013, 5(23): 11615–11619
https://doi.org/10.1039/c3nr03533f
37 Y Zhang, M Ma, J Yang, C Sun, X Dong. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale, 2014, 6(16): 9824–9830
https://doi.org/10.1039/C4NR02833C
38 Y Zhu, X Chen, W Zhou, K Xiang, W Hu, H Chen. Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochimica Acta, 2017, 249: 64–71
https://doi.org/10.1016/j.electacta.2017.08.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed