Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (4): 492-503   https://doi.org/10.1007/s11705-019-1829-9
  本期目录
Recent development and application of thin-film thermoelectric cooler
Yuedong Yu1, Wei Zhu1,2(), Xixia Kong1, Yaling Wang1, Pengcheng Zhu1, Yuan Deng1,2()
1. School of Materials Science and Engineering, Beihang University, Beijing 100083, China
2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
 全文: PDF(1571 KB)   HTML
Abstract

Recently, the performance and fabrication of thin-film thermoelectric materials have been largely enhanced. Based on this enhancement, the thin-film thermoelectric cooler (TEC) is becoming a research hot topic, due to its high cooling flux and microchip level size. To fulfill a thin-film TEC, interfacial problems are unavoidable, as they may largely reduce the properties of a thin-film TEC. Moreover, the architecture of a thin-film TEC should also be properly designed. In this review, we introduced the enhancement of thermoelectric properties of (Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition, physical vapor deposition and electrodeposition. Then, the interfacial problems, including contact resistance, interfacial diffusion and thermal contact resistance, were discussed. Furthermore, the design, fabrication, as well as the performance of thin-film TECs were summarized.

Key wordsthin-film thermoelectric cooler    interfaces    cooling flux    TE device fabrication
收稿日期: 2018-11-05      出版日期: 2020-05-22
Corresponding Author(s): Wei Zhu,Yuan Deng   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 492-503.
Yuedong Yu, Wei Zhu, Xixia Kong, Yaling Wang, Pengcheng Zhu, Yuan Deng. Recent development and application of thin-film thermoelectric cooler. Front. Chem. Sci. Eng., 2020, 14(4): 492-503.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1829-9
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I4/492
Fig.1  
Film Seebeck coefficient /(mV?K1) Thermal conductivity /(Wm1?K 1) ZT Ref.
p-type Bi2Te3/Sb2Te3 130 0.25 2.4 [20]
n-type Bi2Te3/Bi2Te2.83Se0.17 −238 0.58 1.46 [20]
p-type Bi2Te3/Sb2Te3 238 1.2 1.4 [2]
n-type δ-doped Bi2Te3−xSex −276 1.1 1.5 [2]
ZnO 415 Not reported Not reported [23]
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Number of TE leg pairs Total area/mm2 Imax/A qmax/(W?cm2) DTmax/K Published year Ref.
49 3.5×3.5 3 1300 7.3 2009 [3]
1 0.6×0.6 14.78 257.6 43.54 2016 [2]
220 2×2 0.1 Not reported 6 2018 [8]
Tab.2  
Fig.11  
1 J He, T M Tritt. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357(6358): eaak9997
2 G Bulman, P Barletta, J Lewis, N Baldasaro, M Manno, A Bar-Cohen, B Yang. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7: 10302
3 I Chowdhury, R Prasher, K Lofgreen, G Chrysler, S Narasimhan, R Mahajan, D Koester, R Alley, R Venkatasubramanian. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238
4 W He, G Zhang, X Zhang, J Ji, G Li, X Zhao. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25
5 D Zhao, G Tan. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24
6 S J Kim, H E Lee, H Choi, Y Kim, J H We, J S Shin, K J Lee, B J Cho. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 2016, 10(12): 10851–10857
7 D M Rowe. Thermoelectrics Handbook: Macro to Nano. Florida: CRC Press, 2006, 21–38
8 W Zhu, Y Deng, Y Wang, A Wang. Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal, 2013, 44(9): 860–868
9 O Owoyele, S Ferguson, B T O’Connor. Performance analysis of a thermoelectric cooler with a corrugated architecture. Applied Energy, 2015, 147: 184–191
10 S Yin, W Zhu, Y Deng, Y Tu, S Shen, Y Peng. Enhanced electrical conductivity and reliability for fiexible copper thin-film electrode by introducing aluminum buffer layer. Materials & Design, 2017, 116: 524–530
11 M Tan, Y Deng, Y Hao. Enhancement of thermoelectric properties induced by oriented nanolayer in Bi2Te27Se3 columnar films. Materials Chemistry and Physics, 2014, 146(1–2): 153–158
12 W Zhu, Y Deng, L Cao. Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy, 2017, 34(January): 463–471
13 O R Fitriani, B D Long, M C Barma, M Riaz. Sabri M F M, Said S M, Saidur R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable & Sustainable Energy Reviews, 2016, 64: 635–659
14 H Ohta, S Kim, Y Mune, T Mizoguchi, K Nomura, S Ohta, T Nomura, Y Nakanishi, Y Ikuhara, M Hirano, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134
15 H Lv, X D Wang, J H Meng, T H Wang, W M Yan. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Applied Energy, 2016, 175: 285–292
16 L D Hicks, M S Dresselhaus. Effect of quantum-well structures on the thermomagnetic figure of merit. Physical Review. B, 1993, 47(19): 12727–12731
17 H Ohta. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices. Physica Status Solidi (B). Basin Research, 2008, 245(11): 2363–2368
18 J R Szczech, J M Higgins, S Jin. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055
19 B Poudel, Q Hao, Y Ma, Y Lan, A Minnich, B Yu, X Yan, D Wang, A Muto, D Vashaee, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
20 R Venkatasubramanian, E Siivola, T Colpitts, B O’Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
21 J Feng, W Zhu, Y Deng, L Huang, L Liu, R Wang, L Hu, Y Li, X Song, Z Yang, et al. An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods. Chinese Physics B, 2018, 27(4): 047210
22 L D Hicks, M S Dresselhaus. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review. B, 1993, 47(24): 16631–16634
23 K Mahmood, A Ali, M Arshad, M Nabi, N Amin, S Murtaza, S Ejaz, M Khan. Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films. Journal of Experimental and Theoretical Physics, 2017, 124(4): 580–583
24 Y Deng, Y Xiang, Y Song. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082
25 M Tan, Y Deng, Y Wang. Ordered structure and high thermoelectric properties of Bi2(Te,Se)3 nanowire array. Nano Energy, 2014, 3: 144–151
26 T Chen, P Lin, H Chang, C Chen. Enhanced thermoelectricity of three dimensionally mesostructured BixSb2−xTe3 nanoassemblies: From micro-scaled open gaps to isolated sealed mesopores. Nanoscale, 2017, 9: 40–47
27 Z Xiao, K Kisslinger, E Dimasi, J Kimbrough. The fabrication of nanoscale Bi2Te3/Sb2Te3 multilayer thin film-based thermoelectric power chips. Microelectronic Engineering, 2018, 197: 8–14
28 S Shen, W Zhu, Y Deng, H Zhao, Y Peng, C Wang. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Applied Surface Science, 2017, 414: 197–204
29 L Cao, Y Deng, H Gao, Y Wang, X Chen, Z Zhu. Towards high refrigeration capability: The controllable structure of hierarchical Bi5Sb15Te3 flakes on a metal electrode. Physical Chemistry Chemical Physics, 2015, 17(10): 6809–6818
30 Z Zhang, Y Wang, Y Deng, Y Xu. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Communications, 2011, 151(21): 1520–1523
31 H Jung, N V Myung. Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. Electrochimica Acta, 2011, 56(16): 5611–5615
32 M Y Kim, T S Oh. Processing and thermoelectric performance characterization of thin-film devices consisting of electrodeposited bismuth telluride and antimony telluride thin-film legs. Journal of Electronic Materials, 2011, 40(5): 759–764
33 M Y Kim, T S Oh. Preparation and characterization of Bi2Te3/Sb2Te3 thermoelectric thin-film devices for power generation. Journal of Electronic Materials, 2014, 43(6): 1933–1939
34 J Kim, M Zhang, W Bosze, S D Park, J H Lim, N V Myung. Maximizing thermoelectric properties by nanoinclusion of g-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb-Te electrodeposits. Nano Energy, 2015, 13: 727–734
35 H Jung, J H Lim, H Park, J Kim, Y H Choa, N V Myung. Lithographically patterned p-type SbxTey nanoribbons with controlled morphologies and dimensions. Journal of Physical Chemistry C, 2013, 117(33): 17303–17308
36 G Jeong, Y U Kim, H Kim, Y J Kim, H J Sohn. Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011, 4(6): 1986–2002
37 K H Lee, O J Kim. Analysis on the cooling performance of the thermoelectric micro-cooler. International Journal of Heat and Mass Transfer, 2007, 50(9–10): 1982–1992
38 S Wang, W Xie, H Li, X Tang. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19(7): 1024–1031
39 X Mu, H Zhou, D He, W Zhao, P Wei, W Zhu, X Nie, H Liu, Q Zhang. Enhanced electrical properties of stoichiometric Bi5Sb15Te3 film with high-crystallinity via layer-by-layer in-situ growth. Nano Energy, 2017, 33: 55–64
40 R Vizel, T Bargig, O Beeri, Y Gelbstein. Bonding of Bi2Te3-based thermoelectric legs to metallic contacts using Bi82Sb18 alloy. Journal of Electronic Materials, 2016, 45(3): 1296–1300
41 S H Kim, S W Kim, G S Kim, J Kim, J H Park, H Y Yu. Ar plasma treatment for III–V semiconductor-based transistor source/drain contact resistance reduction. Journal of Nanoscience and Nanotechnology, 2016, 16(10): 10389–10392
42 P J Taylor, J R Maddux, G Meissner, R Venkatasubramanian, G Bulman, J Pierce, R Gupta, J Bierschenk, C Caylor, J D’Angelo, et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Applied Physics Letters, 2013, 103(4): 3–7
43 X Kong, W Zhu, L Cao, Y Peng, S Shen, Y Deng. Controllable electrical contact resistance between Cu and oriented-Bi2Te3 film via interface tuning. ACS Applied Materials & Interfaces, 2017, 9(30): 25606–25614
44 H Yong, S Na, J-G Gang, H Shin, S-J Jeon, S Hyun, H-J Lee. Study on the contact resistance of various metals (Au, Ti, and Sb) on Bi-Te and Sb-Te thermoelectric films. Japanese Journal of Applied Physics, 2016, 55(6S3): 06JE03
45 S M Song, J K Park, O J Sul, B J Cho. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Letters, 2012, 12(8): 3887–3892
46 R P Gupta, K Xiong, J B White, K Cho, H N Alshareef, B E Gnade. Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, 2010, 157(6): H666
47 K Byun, H Chung, J Lee, H Yang, H J Song, J Heo, D H Seo, S Park, S W Hwang, I Yoo, et al. Graphene for true ohmic contact at metal-semiconductor junctions. Nano Letters, 2013, 13: 4001–4005
48 W Liu, Q Jie, H S Kim, Z Ren. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia, 2015, 87(155): 357–376
49 K Choi, J Kim, Y Lee, H Kim. ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode. Thin Solid Films, 1999, 341(1–2): 152–155
50 M Kim, K C Choi. Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes. IEEE Transactions on Electron Devices, 2017, 64(8): 3508–3510
51 H Zhou, X Mu, W Zhao, D Tang, P Wei, W Zhu, X Nie, Q Zhang. Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy, 2017, 40(August): 274–281
52 L Peres, A Bou, D Barakel, P Torchio. ZnS|Ag|TiO2 multilayer electrodes with broadband transparency for thin film solar cells. RSC Advances, 2016, 6(66): 61057–61063
53 W Liu, H Wang, L Wang, X Wang, G Joshi, G Chen, Z Ren. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te27Se3 legs for power generation applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(42): 13093–13100
54 C Jiang, X Fan, Z Rong, C Zhang, G Li, B Feng, J Hu, Q Xiang. Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. Journal of Electronic Materials, 2017, 46(2): 1363–1370
55 H H Hsu, C H Cheng, Y L Lin, S H Chiou, C H Huang, C P Cheng. Structural stability of thermoelectric diffusion barriers: Experimental results and first principles calculations. Applied Physics Letters, 2013, 103: 053902
56 T Cardinal, M Kwan, T Borca-Tasciuc, G Ramanath. Multifold electrical conductance enhancements at metal-bismuth telluride interfaces modified using an organosilane monolayer. ACS Applied Materials & Interfaces, 2017, 9(3): 2001–2005
57 S P Feng, Y H Chang, J Yang, B Poudel, B Yu, Z Ren, G Chen. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Physical Chemistry Chemical Physics, 2013, 15(18): 6757–6762
58 D K Aswal, R Basu, A Singh. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management, 2016, 114: 50–67
59 X R Ferreres, S Aminorroaya Yamini, M Nancarrow, C Zhang. One-step bonding of Ni electrode to n-type PbTe: A step towards fabrication of thermoelectric generators. Materials & Design, 2016, 107: 90–97
60 X Zhu, L Cao, W Zhu, Y Deng. Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance. Advanced Materials Interfaces, 2018, 1801279: 1801279
61 D Zhao, H Geng, X Teng. Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element. Journal of Alloys and Compounds, 2012, 517: 198–203
62 V A Venugopal, G Ottaviani, C Bresolin, D Erbetta, A Modelli, E Varesi. Thermal stability of Ge2Sb2Te5 in contact with Ti and TiN. Journal of Electronic Materials, 2009, 38(10): 2063–2068
63 T Cardinal, M Kwan, T Borca-Tasciuc, G Ramanath. Effect of molecular length on the electrical conductance across metal-alkanedithiol-Bi2Te3 interfaces. Applied Physics Letters, 2016, 109(17): 173904
64 T Cardinal, Devender, Borca-Tasciuc T, Ramanath G. Tailoring electrical transport across metal-thermoelectric interfaces using a nanomolecular monolayer. ACS Applied Materials & Interfaces, 2016, 8(7): 4275–4279
65 Y Hong, L Li, X C Zeng, J Zhang. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale, 2015, 7(14): 6286–6294
66 C H Liebert, R E Gaugler. The significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes. Thin Solid Films, 1980, 73(2): 471–475
67 Y Su, J Lu, B Huang. Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. International Journal of Heat and Mass Transfer, 2018, 117: 436–446
68 R He, G Schierning, K Nielsch. Thermoelectric devices: A review of devices, architectures, and contact optimization. Advanced Materials Technologies, 2017, 1700256: 1700256
69 W Zhu, Y Deng, M Gao, Y Wang. Hierarchical Bi-Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Conversion and Management, 2015, 106: 1192–1200
70 M J Huang, R H Yen, A B Wang. The influence of the Thomson effect on the performance of a thermoelectric cooler. International Journal of Heat and Mass Transfer, 2005, 48(2): 413–418
71 C H Cheng, S Y Huang, T C Cheng. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer, 2010, 53(9–10): 2001–2011
72 Y S Ju. Impact of interface resistance on pulsed thermoelectric cooling. Journal of Heat Transfer, 2008, 130(1): 14502
73 E E Antonova, D C Looman. Finite elements for thermoelectric device analysis in ANSYS. International Conference on Thermoelectrics, ICT. Proceedings, 2005, 2005: 200–203
74 D Ebling, M Jaegle, M Bartel, A Jacquot, H Böttner. Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456–1461
75 G E Bulman, E Siivola, R Wiitala, R Venkatasubramanian, M Acree, N Ritz. Three-stage thin-film superlattice thermoelectric multistage microcoolers with a DTmax of 102 K. Journal of Electronic Materials, 2009, 38(7): 1510–1515
76 J Garcia, D A L Ramos, M Mohn, H Schlörb, N P Rodriguez, L Akinsinde, K Nielsch, G Schierning, H Reith. Fabrication and modeling of integrated micro-thermoelectric cooler by template-assisted electrochemical deposition. ECS Journal of Solid State Science and Technology: JSS, 2017, 6(3): N3022–N3028
77 R Mahajan, C P Chiu, G Chrysler. Cooling a microprocessor chip. Proceedings of the IEEE, 2006, 94(8): 1476–1485
78 D Enescu, E O Virjoghe. A review on thermoelectric cooling parameters and performance. Renewable & Sustainable Energy Reviews, 2014, 38: 903–916
79 B Habbe, J Nurnus. Thin film thermoelectrics today and tomorrow. Electronics Cooling, 2011, 17: 24–31
80 P Wang, B Yang, A Bar-Cohen. Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling. Heat Transfer Engineering, 2009, 30(9): 736–743
81 G Li, J Garcia Fernandez, D A Lara Ramos, V Barati, N Pérez, I Soldatov, H Reith, G Schierning, K Nielsch. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1(10): 555–561
82 R J Buist. A new method for testing thermoelectric materials and devices. 11th International Conference on Thermoelectrics, Arlington, Texas, 1992: 15
83 S M Gorodetskiy, R J Buist, P G Lau. Quality testing of two-stage thermoelectric cascades. XVI ICT ’97 Proceedings ICT’97 16th International Conference on Thermoelectrics (Cat No97TH8291), 1997: 668–671
84 M Manno, B Yang, A Bar-cohen. Non-contact method for characterization of small size thermoelectric modules. Review of Scientific Instruments, 2015, 86(8): 084701–084708
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed