Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (4): 629-638   https://doi.org/10.1007/s11705-019-1840-1
  本期目录
Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages
Firat Salman, Hilal C. Kazici(), Hilal Kivrak
Department of Chemical Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, 65000 Van, Turkey
 全文: PDF(1807 KB)   HTML
Abstract

Novel PdCoAg/C nanostructures were successfully synthesized by the polyol method in order to develop electrocatalysts, related to the glucose sensor performance of the high glycemic index in beverages. The characterization of this novel PdCoAg/C electrocatalyst was performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy equipped with energy dispersive X-ray. The characterization results revealed that electronic state of the PdCoAg/C electrocatalyst was modified by the addition of the third metal. The electrochemical performances of the sensor were investigated by cyclic voltammetry and differential pulse voltammetry. The prepared enzyme-free sensor exhibited excellent catalytic activity against glucose with a wide detection range (0.005 to 0.35 mmol∙L−1), low limit of detection (0.003 mmol∙L−1), high sensitivity (4156.34 µA∙mmol−1∙L∙cm−2), and long-term stability (10 days) because of the synergistic effect between the ternary metals. The glucose contents of several energy drinks, fruit juices, and carbonated beverages were analyzed using the novel PdCoAg/NGCE/C sensor system. These results indicate the feasibility for applications in the foods industry.

Key wordsnon-enzymatic    glucose detection    ternary metals    glycemic index    beverages
收稿日期: 2018-11-28      出版日期: 2020-05-22
Corresponding Author(s): Hilal C. Kazici   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 629-638.
Firat Salman, Hilal C. Kazici, Hilal Kivrak. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Front. Chem. Sci. Eng., 2020, 14(4): 629-638.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1840-1
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I4/629
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Electrode Sensitivity/(µA?mmol−1?L?cm−2) Linear range of detection/(mmol?L−1) LOD/(mmol?L−1) Ref.
Cu-CNTs-GCE 17.76 7×10−4 to 3.5 0.0002 [30]
PtNFs-GO/GCE 1.26 0.002 to 10.3 0.002 [26]
CuO/OPpy/MWCNTs 3922.6 0.02 to 10 0.004 [29]
Cu2O/MWCNT 6.53 5×10−5 to 5×10−3 0.0005 [28]
CuO nanowires 0.49 4×10−4 to 2.0 0.00005 [27]
Ti/TiO2 nanotube array/Ni 200 0.1?1.7 0.004 [34]
La0.6Sr0.4Co0.2Fe0.8O3/CPE 285 0?0.2 0.007 [35]
Graphene-AuNPs/chitosan ? 2?14 0.180 [36]
Ni-Cu/TiO2/Ti ? 0.01?3.2 0.005 [37]
Pt-Pd NF
PtAuPd/CNC
?
11.24
0?16
0?10
0.026
0.0029
[38]
[20]
PdCoAg/NGCE/C 4156.34 0.005 to 0.35 0.003 Current work
Tab.1  
Fig.6  
Fig.7  
Samples a)Sugar level/(g?mL–1) b)Initial glucose/(mmol?L−1) b)Glucose found sensor/(mmol?L−1) Recovery %RSD
Energy drink
Red Bull
11.3 0.62 0.61 98.38 1.14
Fruit juice-food industry
Apricot
Mandarin
Blueberry
Pomegranate
Apple
Grape
Peach
6.83
9.5
9
10
11
7.6
12
0.37
0.527
0.5
0.55
0.6
0.42
0.66
0.34
0.534
0.483
0.53
0.58
0.4
0.65
5.34
0.93
2.44
2.61
2.39
3.44
1.07
91.89
101.32
96.6
96.36
96.66
95.23
98.48
Carbonated beverages
Coca-Cola Company
Fanta
10.6
12.5
0.58
0.694
0.58
0.7
0
0.6
100
100.8
Tab.2  
1 D Mattheeuws, R Rottiers, J J Kaneko, A Vermeulen. Diabetes-mellitus in dogs—relationship of obesity to glucose-tolerance and insulin-response. American Journal of Veterinary Research, 1984, 45(1): 98–103
2 D B Pawlak, J A Kushner, D S Ludwig. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet, 2004, 364(9436): 778–785
https://doi.org/10.1016/S0140-6736(04)16937-7
3 I Abete, D Parra, J A Martinez. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clinical Nutrition (Edinburgh, Lothian), 2008, 27(4): 545–551
https://doi.org/10.1016/j.clnu.2008.01.005
4 A Salek-Maghsoudi, F Vakhshiteh, R Torabi, S Hassani, M R Ganjali, P Norouzi, M Hosseini, M Abdollahi. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors & Bioelectronics, 2018, 99: 122–135
https://doi.org/10.1016/j.bios.2017.07.047
5 D Jiang, Q Liu, K Wang, J Qian, X Y Dong, Z T Yang, X J Du, B J Qiu. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278
https://doi.org/10.1016/j.bios.2013.11.005
6 L Shabnam, S N Faisal, A K Roy, E Haque, A I Minett, V G Gomes. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, 2017, 221: 751–759
https://doi.org/10.1016/j.foodchem.2016.11.107
7 P Si, Y J Huang, T H Wang, J M Ma. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances, 2013, 3(11): 3487–3502
https://doi.org/10.1039/c2ra22360k
8 X L Dai, W Q Deng, C You, Z Shen, X L Xiong, X P A Sun. Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10(15): 1680–1684
https://doi.org/10.1039/C8AY00370J
9 Z Wang, X Q Cao, D N Liu, S Hao, R M Kong, G Du, A M Asiri, X P Sun. Copper-nitride nanowires array: An efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose andhydrogen peroxide sensing. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(21): 4986–4989
https://doi.org/10.1002/chem.201700366
10 F Y Xie, X Q Cao, F L Qu, A M Asiri, X P Sun. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators. B, Chemical, 2018, 255: 1254–1261
https://doi.org/10.1016/j.snb.2017.08.098
11 L H Tian, L Liu, Y Y Li, X Feng, Q Wei, W Cao. A novel label-free electrochemical immunosensor for the detection of hepatitis B surface antigen. Analytical Methods, 2016, 8(40): 7380–7386
https://doi.org/10.1039/C6AY01959E
12 H C Kazici, F Salman, A Caglar, H Kivrak, N Aktas. Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(3): 145–151
https://doi.org/10.1080/1536383X.2017.1420061
13 A Afraz, A A Rafati, A Hajian. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2013, 17(7): 2017–2025
https://doi.org/10.1007/s10008-013-2057-8
14 O Sahin, H Kivrak, A Kivrak, H C Kazici, O Alal, D Atbas. Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 2017, 12(1): 762–769
https://doi.org/10.20964/2017.01.26
15 H Kivrak, O Alal, D Atbas. Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor. Electrochimica Acta, 2015, 176: 497–503
https://doi.org/10.1016/j.electacta.2015.06.151
16 M Guler, V Turkoglu, A Bulut, M Zahmakiran. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochimica Acta, 2018, 263: 118–126
https://doi.org/10.1016/j.electacta.2018.01.048
17 J W Yang, X Y Liang, L Cui, H Y Liu, J B Xie, W X Liu. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosensors & Bioelectronics, 2016, 80: 171–174
https://doi.org/10.1016/j.bios.2016.01.056
18 L H Li, W D Zhang, J S Ye. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis, 2008, 20(20): 2212–2216
https://doi.org/10.1002/elan.200804312
19 J Ryu, K Kim, H S Kim, H T Hahn, D Lashmore. Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosensors & Bioelectronics, 2010, 26(2): 602–607
https://doi.org/10.1016/j.bios.2010.07.021
20 B Singh, E Dempsey, F Laffir. Carbon nanochips and nanotubes decorated PtAuPd-based nanocomposites for glucose sensing: Role of support material and efficient Pt utilisation. Sensors and Actuators. B, Chemical, 2014, 205: 401–410
https://doi.org/10.1016/j.snb.2014.08.034
21 M Oyama, X M Chen, X Chen. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis. Analytical Sciences, 2014, 30(5): 529–538
https://doi.org/10.2116/analsci.30.529
22 A C Galvis-Sanchez, J R Santos, A Rangel. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta, 2015, 133(Supp): 1–6
https://doi.org/10.1016/j.talanta.2013.12.058
23 J L Rousset, J C Bertolini, P Miegge. Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fee Pd-X alloys. Physical Review. B, 1996, 53(8): 4947–4957
https://doi.org/10.1103/PhysRevB.53.4947
24 C H Liu, R H Liu, Q J Sun, J B Chang, X Gao, Y Liu, S T Lee, Z H Kang, S D Wang. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 2015, 7(14): 6356–6362
https://doi.org/10.1039/C4NR06855F
25 Y Han, J B Zheng, S Y Dong. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites. Electrochimica Acta, 2013, 90: 35–43
https://doi.org/10.1016/j.electacta.2012.11.117
26 G H Wu, X H Song, Y F Wu, X M Chen, F Luo, X Chen. Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta, 2013, 105: 379–385
https://doi.org/10.1016/j.talanta.2012.10.066
27 Z J Zhuang, X D Su, H Y Yuan, Q Sun, D Xiao, M M F Choi. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst (London), 2008, 133(1): 126–132
https://doi.org/10.1039/B712970J
28 X J Zhang, G F Wang, W Zhang, Y Wei, B Fang. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors & Bioelectronics, 2009, 24(11): 3395–3398
https://doi.org/10.1016/j.bios.2009.04.031
29 H Yu, X Jian, J Jin, X C Zheng, R T Liu, G C Qi. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchimica Acta, 2015, 182(1-2): 157–165
https://doi.org/10.1007/s00604-014-1310-x
30 X H Kang, Z B Mai, X Y Zou, P X Cai, J Y Mo. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363(1): 143–150
https://doi.org/10.1016/j.ab.2007.01.003
31 G X Zhong, W X Zhang, Y M Sun, Y Q Wei, Y Lei, H P Peng, A L Liu, Y Z Chen, X H Lin. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators. B, Chemical, 2015, 212: 72–77
https://doi.org/10.1016/j.snb.2015.02.003
32 J Song, L Xu, C Y Zhou, R Q Xing, Q L Dai, D L Liu, H W Song. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Applied Materials & Interfaces, 2013, 5(24): 12928–12934
https://doi.org/10.1021/am403508f
33 H C Gao, F Xiao, C B Ching, H W Duan. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzynnatic amperometric glucose detection. ACS Applied Materials & Interfaces, 2011, 3(8): 3049–3057
https://doi.org/10.1021/am200563f
34 C X Wang, L W Yin, L Y Zhang, R Gao. Ti/TiO2 Nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. Journal of Physical Chemistry C, 2010, 114(10): 4408–4413
https://doi.org/10.1021/jp912232p
35 L F Liotta, F Puleo, V La Parola, S G Leonardi, N Donato, D Aloisio, G Neri. La0.6Sr0.4FeO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015, 27(3): 684–692
https://doi.org/10.1002/elan.201400589
36 C S Shan, H F Yang, D X Han, Q X Zhang, A Ivaska, L Niu. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors & Bioelectronics, 2010, 25(5): 1070–1074
https://doi.org/10.1016/j.bios.2009.09.024
37 X L Li, J Y Yao, F L Liu, H C He, M Zhou, N Mao, P Xiao, Y H Zhang. Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sensors and Actuators. B, Chemical, 2013, 181: 501–508
https://doi.org/10.1016/j.snb.2013.02.035
38 X H Niu, M B Lan, C Chen, H L Zhao. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta, 2012, 99: 1062–1067
https://doi.org/10.1016/j.talanta.2012.07.039
39 M Moller, H Over, B Smarsly, N Tarabanko, S Urban. Electrospun ceria-based nanofibers for the facile assessment of catalyst morphological stability under harsh HCl oxidation reaction conditions. Catalysis Today, 2015, 253: 207–218
https://doi.org/10.1016/j.cattod.2015.02.027
40 R Anari, R Amani, M Veissi. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes & Metabolic Syndrome, 2017, 11: 675–678
https://doi.org/10.1016/j.dsx.2017.04.024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed