Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (2): 143-158   https://doi.org/10.1007/s11705-019-1852-x
  本期目录
Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties
Zhaoqi Ye1, Hongbin Zhang2(), Yahong Zhang1, Yi Tang1()
1. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
2. Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
 全文: PDF(4490 KB)   HTML
Abstract

As an important zeolite material, MFI zeolites, as well as their controllable synthesis, are of great interest in both basic and applied science. Among the developed synthetic approaches, the seed-induced method has gradually evolved into a facile, low-cost, and even green alternative to give zeolites the desirable physicochemical properties. In this review, we briefly summarize the development of seed-induced syntheses of diverse functional MFI zeolites, where the “living” seed crystals not only direct the formation of zeolitic framework but also function as special “templates” or “units” to fine-tune the zeolite materials with diverse sizes, shapes, compositions, morphologies and pore structures. Moreover, on the basis of their structural features and crystallization behaviors in seed-induced synthesis, we reveal the roles of seeds and discuss the related crystallization mechanisms including both classical and non-classical pathways. We also want to guide readers to investigate the structure-performance relationships between these functional MFI zeolite catalysts and suitable catalytic reactions.

Key wordsseed-induced synthesis    MFI zeolite    synthesis mechanism    catalytic property
收稿日期: 2019-02-28      出版日期: 2020-03-24
Corresponding Author(s): Hongbin Zhang,Yi Tang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 143-158.
Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1852-x
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I2/143
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Ref. Si/Al ratio in the gel OSDAa) Si/Al ratio in the frameworkb) Heteroatom incorporation NH3-TPD resultsc)
Tpeak/(°C) Acid amount/(mmol·g–1)
[11] 14.2 None 9.6 \
[12] 50 None 16 \
[30] 25 None 12 \
39 None 15 \
99 None 25 \
200 None 52 \
22 TPABr (0.1) 18 \
40 TPABr (0.1) 38 \ 230 / 400 0.41 (total)
50 TPABr (0.1) 41 \
100 TPABr (0.1) 82 \
170 TPABr (0.1) 142 \
260 TPABr (0.1) 214 \
[28] 125 TPABr (0.1) 100 \ 166 / 351 0.064 / 0.102
125 TPABr (0.1) 105 \ 169 / 358 0.061 / 0.087
125 TPABr (0.1) 110 \ 169 / 355 0.056 / 0.089
125 TPABr (0.1) 102 \ 162 / 341 0.058 / 0.097
[29] 40 None 34 \ 220 / 390
200 EA (0.1) 152 \
[31] 200 TPABr (0.1) 162d) B (0.62 vs. Al)d) 145 / 332 0.052 / 0.067
[99] 200 None Si/(Al+Fe)= 119e) Fe 186 / 360
Tab.1  
Fig.11  
Fig.12  
1 A Corma, A Martinez. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144
https://doi.org/10.1002/adma.19950070206
2 M E Davis. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
https://doi.org/10.1038/nature00785
3 J Shi, Y D Wang, W M Yang, Y Tang, Z K Xie. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
https://doi.org/10.1039/C5CS00626K
4 M Hartmann, A G Machoke, W Schwieger. Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews, 2016, 45(12): 3313–3330
https://doi.org/10.1039/C5CS00935A
5 M Shamzhy, M Opanasenko, P Concepción, A Martínez. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
https://doi.org/10.1039/C8CS00887F
6 C S Cundy, P A Cox. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
https://doi.org/10.1021/cr020060i
7 D P Serrano, J M Escola, P Pizarro. Synthesis strategies in the search for hierarchical zeolites. Chemical Society Reviews, 2013, 42(9): 4004–4035
https://doi.org/10.1039/C2CS35330J
8 X J Meng, F S Xiao. Green routes for synthesis of zeolites. Chemical Reviews, 2014, 114(2): 1521–1543
https://doi.org/10.1021/cr4001513
9 W Schwieger, A G Machoke, T Weissenberger, A Inayat, T Selvam, M Klumpp, A Inayat. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376
https://doi.org/10.1039/C5CS00599J
10 N Masoumifard, R Guillet-Nicolas, F Kleitz. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials. Advanced Materials, 2018, 30(16): 1704439
https://doi.org/10.1002/adma.201704439
11 G Majano, A Darwiche, S Mintova, V Valtchev. Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084–7091
https://doi.org/10.1021/ie8017252
12 N Ren, Z J Yang, X C Lv, J Shi, Y H Zhang, Y Tang. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114
https://doi.org/10.1016/j.micromeso.2009.12.009
13 K Iyoki, Y Kamimura, K Itabashi, A Shimojima, T Okubo. Synthesis of MTW-type zeolites in the absence of organic structure-directing agent. Chemistry Letters, 2010, 39(7): 730–731
https://doi.org/10.1246/cl.2010.730
14 Y Kamimura, K Itabashi, T Okubo. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “green MTW” from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 2012, 147(1): 149–156
https://doi.org/10.1016/j.micromeso.2011.05.038
15 Q J Yu, J Chen, Q Zhang, C Y Li, Q K Cui. Micron ZSM-11 microspheres seed-assisted synthesis of hierarchical submicron ZSM-11 with intergrowth morphology. Materials Letters, 2014, 120: 97–100
https://doi.org/10.1016/j.matlet.2014.01.059
16 M A Snyder, M Tsapatsis. Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes. Angewandte Chemie International Edition, 2007, 46(40): 7560–7573
https://doi.org/10.1002/anie.200604910
17 L H Chen, X Y Li, J C Rooke, Y H Zhang, X Y Yang, Y Tang, F S Xiao, B L Su. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22(34): 17381–17403
https://doi.org/10.1039/c2jm31957h
18 A G Dong, Y J Wang, Y Tang, N Ren, Y H Zhang, J H Yue, Z Gao. Zeolitic tissue through wood cell templating. Advanced Materials, 2002, 14(12): 926–929
https://doi.org/10.1002/1521-4095(20020618)14:12<926::AID-ADMA926>3.0.CO;2-1
19 A G Dong, Y J Wang, Y Tang, N Ren, Y H Zhang, Z Gao. Hollow zeolite capsules: A novel approach for fabrication and guest encapsulation. Chemistry of Materials, 2002, 14(8): 3217–3219
https://doi.org/10.1021/cm025577p
20 D P Serrano, J Aguado, J M Escola, J M Rodriguez, A Peral. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464
https://doi.org/10.1021/cm060080r
21 D P Serrano, J Aguado, J M Escola, J M Rodriguez, A Peral. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218
https://doi.org/10.1039/b805502e
22 H B Zhang, Y Zhao, H X Zhang, P C Wang, Z P Shi, J J Mao, Y H Zhang, Y Tang. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(21): 7141–7151
https://doi.org/10.1002/chem.201600028
23 H B Zhang, H X Zhang, Y Zhao, Z P Shi, Y H Zhang, Y Tang. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chemistry of Materials, 2017, 29(21): 9247–9255
https://doi.org/10.1021/acs.chemmater.7b03121
24 J J De Yoreo, P U P A Gilbert, N A J M Sommerdijk, R L Penn, S Whitelam, D Joester, H Z Zhang, J D Rimer, A Navrotsky, J F Banfield, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349(6247): aaa6760
https://doi.org/10.1126/science.aaa6760
25 K N Olafson, R Li, B G Alamani, J D Rimer. Engineering crystal modifiers: Bridging classical and nonclassical crystallization. Chemistry of Materials, 2016, 28(23): 8453–8465
https://doi.org/10.1021/acs.chemmater.6b03550
26 M Kumar, H Luo, Y Roman-Leshkov, J D Rimer. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. Journal of the American Chemical Society, 2015, 137(40): 13007–13017
https://doi.org/10.1021/jacs.5b07477
27 Y Zhao, H B Zhang, P C Wang, F Q Xue, Z Ye, Y H Zhang, Y Tang. Tailoring the morphology of MTW zeolite mesocrystals: Intertwined classical/nonclassical crystallization. Chemistry of Materials, 2017, 29(8): 3387–3396
https://doi.org/10.1021/acs.chemmater.6b03813
28 H B Zhang, Z J Hu, L Huang, H X Zhang, K S Song, L Wang, Z P Shi, J X Ma, Y Zhuang, W Shen, et al. Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity. ACS Catalysis, 2015, 5(4): 2548–2558
https://doi.org/10.1021/cs5019953
29 H B Zhang, K S Song, L Wang, H X Zhang, Y H Zhang, Y Tang. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem, 2013, 5(10): 2874–2878
https://doi.org/10.1002/cctc.201300242
30 H B Zhang, Y C Ma, K S Song, Y H Zhang, Y Tang. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 2013, 302: 115–125
https://doi.org/10.1016/j.jcat.2013.03.019
31 Z J Hu, H B Zhang, L Wang, H X Zhang, Y H Zhang, H L Xu, W Shen, Y Tang. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catalysis Science & Technology, 2014, 4(9): 2891–2895
https://doi.org/10.1039/C4CY00376D
32 U Betke, A Lieb. Micro-macroporous composite materials—preparation techniques and selected applications: A review. Advanced Engineering Materials, 2018, 20(9): 1800252
https://doi.org/10.1002/adem.201800252
33 F C Buciuman, B Kraushaar-Czarnetzki. Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 2001, 69(1–4): 337–342
https://doi.org/10.1016/S0920-5861(01)00387-X
34 E R Silva, J M Silva, M F Vaz, F A C Oliveira, F Ribeiro. Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63(5): 572–574
https://doi.org/10.1016/j.matlet.2008.11.037
35 B Zhang, S A Davis, S Mann, N H Mendelson. Bacterial templating of zeolite fibres with hierarchical structure. Chemical Communications, 2000, 9: 781–782
https://doi.org/10.1039/b001528h
36 L M Huang, Z B Wang, J Y Sun, L Miao, Q Z Li, Y S Yan, D Y Zhao. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531
https://doi.org/10.1021/ja994240u
37 K T Jung, J H Hyun, Y G Shul, D S Kim. Synthesis of fibrous titanium silicalite (FTS-1) zeolite. Zeolites, 1997, 19(2–3): 161–168
https://doi.org/10.1016/S0144-2449(97)00063-8
38 K T Jung, J H Hyun, Y G Shul, K K Koo. Nanoparticle synthesis of titanium silicalite for fiber, film, and monolith formation. AIChE Journal. American Institute of Chemical Engineers, 1997, 43(S11): 2802–2808
https://doi.org/10.1002/aic.690431327
39 H T Wang, L M Huang, Z B Wang, A Mitra, Y S Yan. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chemical Communications, 2001, 15: 1364–1365
https://doi.org/10.1039/b104275k
40 Z B Wang, H T Wang, A Mitra, L M Huang, Y S Yan. Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001, 13(10): 746–749
https://doi.org/10.1002/1521-4095(200105)13:10<746::AID-ADMA746>3.0.CO;2-J
41 G Decher. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237
https://doi.org/10.1126/science.277.5330.1232
42 X D Wang, Y Tang, Y J Wang, Z Gao, W L Yang, S K Fu. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162
https://doi.org/10.1039/b006539k
43 Y J Wang, Y Tang, X D Wang, W L Yang, Z Gao. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method. Chemistry Letters, 2000, 29(11): 1344–1345
https://doi.org/10.1246/cl.2000.1344
44 K H Rhodes, S A Davis, F Caruso, B J Zhang, S Mann. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000, 12(10): 2832–2834
https://doi.org/10.1021/cm000438y
45 A G Dong, Y J Wang, D J Wang, W L Yang, Y H Zhang, N Ren, Z Gao, Y Tang. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors. Microporous and Mesoporous Materials, 2003, 64(1–3): 69–81
https://doi.org/10.1016/S1387-1811(03)00484-0
46 A A Dong, Y J Wang, Y Tang, Y H Zhang, N Ren, Z Gao. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510
https://doi.org/10.1002/1521-4095(20021016)14:20<1506::AID-ADMA1506>3.0.CO;2-Z
47 V Valtchev. Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chemistry of Materials, 2002, 14(10): 4371–4377
https://doi.org/10.1021/cm020579v
48 Z P Lai, M Tsapatsis, J R Nicolich. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers. Advanced Functional Materials, 2004, 14(7): 716–729
https://doi.org/10.1002/adfm.200400040
49 N Rangnekar, N Mittal, B Elyassi, J Caro, M Tsapatsis. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154
https://doi.org/10.1039/C5CS00292C
50 G T Kerr. Chemistry of crystalline aluminosilicates. I. factors affecting formation of zeolite A. Journal of Physical Chemistry, 1966, 70(4): 1047–1050
https://doi.org/10.1021/j100876a015
51 H Kacirek, H Lechert. Investigations on growth of the zeolite type NaY. Journal of Physical Chemistry, 1975, 79(15): 1589–1593
https://doi.org/10.1021/j100582a024
52 G T Kerr. Chemistry of crystalline aluminosilicates. IV. factors affecting formation of zeolites X and B. Journal of Physical Chemistry, 1968, 72(4): 1385–1386
https://doi.org/10.1021/j100850a056
53 P K Dutta, J Bronic. Mechanism of zeolite formation—seed gel interaction. Zeolites, 1994, 14(4): 250–255
https://doi.org/10.1016/0144-2449(94)90092-2
54 B Xie, J W Song, L M Ren, Y Y Ji, J X Li, F S Xiao. Organotemplate-free and fast route for synthesizing Beta zeolite. Chemistry of Materials, 2008, 20(14): 4533–4535
https://doi.org/10.1021/cm801167e
55 N Ren, J Bronic, B Subotic, X C Lv, Z J Yang, Y Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous and Mesoporous Materials, 2011, 139(1–3): 197–206
https://doi.org/10.1016/j.micromeso.2010.10.043
56 N Ren, J Bronic, B Subotic, Y M Song, X C Lv, Y Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous and Mesoporous Materials, 2012, 147(1): 229–241
https://doi.org/10.1016/j.micromeso.2011.06.022
57 Q J Yu, Q Zhang, J W Liu, C Y Li, Q K Cui. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5. CrystEngComm, 2013, 15(38): 7680–7687
https://doi.org/10.1039/c3ce40784e
58 M H Nada, S C Larsen. Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 2017, 239: 444–452
https://doi.org/10.1016/j.micromeso.2016.10.040
59 F Pan, X C Lu, T Z Wang, Y Yan. Submicron ZSM-5 synthesized by green and fast route. Materials Letters, 2017, 196: 245–247
https://doi.org/10.1016/j.matlet.2017.03.060
60 D P Serrano, J Aguado, G Morales, J M Rodriguez, A Peral, M Thommes, J D Epping, B F Chmelka. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654
https://doi.org/10.1021/cm801951a
61 D P Serrano, T J Pinnavaia, J Aguado, J M Escola, A Peral, L Villalba. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 2014, 227: 15–25
https://doi.org/10.1016/j.cattod.2013.10.052
62 H Wang, T J Pinnavaia. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
https://doi.org/10.1002/anie.200602595
63 Y Zhu, Z L Hua, J Zhou, L J Wang, J J Zhao, Y Gong, W Wu, M L Ruan, J L Shi. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618–14627
https://doi.org/10.1002/chem.201101401
64 M Liu, J H Li, W Z Jia, M J Qin, Y N Wang, K Tong, H H Chen, Z R Zhu. Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide. RSC Advances, 2015, 5(12): 9237–9240
https://doi.org/10.1039/C4RA14955F
65 H B Chen, Y Q Wang, C Sun, X Wang, C Wang. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene. Catalysis Communications, 2018, 112: 10–14
https://doi.org/10.1016/j.catcom.2018.04.017
66 Y Zhu, Z L Hua, Y D Song, W Wu, X X Zhou, J Zhou, J L Shi. Highly chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites. Journal of Catalysis, 2013, 299: 20–29
https://doi.org/10.1016/j.jcat.2012.11.034
67 Q J Yu, X J Meng, J W Liu, C Y Li, Q K Cui. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous and Mesoporous Materials, 2013, 181: 192–200
https://doi.org/10.1016/j.micromeso.2013.07.034
68 C S Cundy, P A Cox. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 2005, 82(1–2): 1–78
https://doi.org/10.1016/j.micromeso.2005.02.016
69 J Warzywoda, R D Edelman, R W Thompson. Thoughts on the induction time in zeolite crystallization. Zeolites, 1989, 9(3): 187–192
https://doi.org/10.1016/0144-2449(89)90024-9
70 H X Zhang, H B Zhang, P C Wang, Y Zhao, Z P Shi, Y H Zhang, Y Tang. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6(53): 47623–47631
https://doi.org/10.1039/C6RA08211D
71 C E A Kirschhock, R Ravishankar, P A Jacobs, J A Martens. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. Journal of Physical Chemistry B, 1999, 103(50): 11021–11027
https://doi.org/10.1021/jp992272y
72 T M Davis, T O Drews, H Ramanan, C He, J S Dong, H Schnablegger, M A Katsoulakis, E Kokkoli, A V McCormick, R L Penn, M Tsapatsis. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials, 2006, 5(5): 400–408
https://doi.org/10.1038/nmat1636
73 R Q Song, H Colfen. Mesocrystals-ordered nanoparticle superstructures. Advanced Materials, 2010, 22(12): 1301–1330
https://doi.org/10.1002/adma.200901365
74 Y M Fang, H Q Hu, G H Chen. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chemistry of Materials, 2008, 20(5): 1670–1672
https://doi.org/10.1021/cm703265q
75 P P E A de Moor, T P M Beelen, B U Komanschek, L W Beck, P Wagner, M E Davis, R A van Santen. Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(7): 2083–2088
https://doi.org/10.1002/(SICI)1521-3765(19990702)5:7<2083::AID-CHEM2083>3.0.CO;2-F
76 J W Zheng, W P Zhang, Z T Liu, Q S Huo, K K Zhu, X G Zhou, W K Yuan. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties. Microporous and Mesoporous Materials, 2016, 225: 74–87
https://doi.org/10.1016/j.micromeso.2015.12.007
77 Y Zhao, Z Q Ye, L Wang, H B Zhang, F Q Xue, S H Xie, X M Cao, Y H Zhang, Y Tang. Engineering fractal MTW zeolite mesocrystal: Particle-based dendritic growth via twinning-plane induced crystallization. Crystal Growth & Design, 2018, 18(2): 1101–1108
https://doi.org/10.1021/acs.cgd.7b01547
78 P C Wang, Y Zhao, H B Zhang, T Yu, Y H Zhang, Y Tang. Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Advances, 2017, 7(38): 23272–23278
https://doi.org/10.1039/C7RA02864D
79 L Wang, S C Zhu, M K Shen, H W Tian, S H Xie, H B Zhang, Y H Zhang, Y Tang. Fractal MTW zeolite crystals: Hidden dimensions in nanoporous materials. Angewandte Chemie International Edition, 2017, 56(39): 11764–11768
https://doi.org/10.1002/anie.201704499
80 M Kumar, R Li, J D Rimer. Assembly and evolution of amorphous precursors in zeolite L crystallization. Chemistry of Materials, 2016, 28(6): 1714–1727
https://doi.org/10.1021/acs.chemmater.5b04569
81 A I Lupulescu, M Kumar, J D Rimer. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617
https://doi.org/10.1021/ja4015277
82 L Wang, N N Yan, X N Liu, X B Zhao, M K Shen, L F Liu, P Tian, P Guo, Z M Liu. Unraveling the twin and tunability of the crystal domain sizes in the medium-pore zeolite ZSM-57 by electron crystallography. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(4): 1029–1036
83 J Socci, A Osatiashtiani, G Kyriakou, T Bridgwater. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A, General, 2019, 570: 218–227
https://doi.org/10.1016/j.apcata.2018.11.020
84 H Y Zhang, L Wang, D L Zhang, X J Meng, F S Xiao. Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233: 133–139
https://doi.org/10.1016/j.micromeso.2015.11.063
85 T C Hoff, D W Gardner, R Thilakaratne, J Proano-Aviles, R C Brown, J P Tessonnier. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Applied Catalysis A, General, 2017, 529: 68–78
https://doi.org/10.1016/j.apcata.2016.10.009
86 K Itabashi, Y Kamimura, K Iyoki, A Shimojima, T Okubo. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. Journal of the American Chemical Society, 2012, 134(28): 11542–11549
https://doi.org/10.1021/ja3022335
87 Y Y Ji, Y Q Wang, B Xie, F S Xiao. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites. Comments on Inorganic Chemistry, 2016, 36(1): 1–16
https://doi.org/10.1080/02603594.2015.1031375
88 J Shao, T J Fu, Q Ma, Z Ma, C M Zhang, Z Li. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 2019, 273: 122–132
https://doi.org/10.1016/j.micromeso.2018.07.007
89 A Ghorbanpour, A Gumidyala, L C Grabow, S P Crossley, J D Rimer. Epitaxial growth of ZSM-5@Silicalite-1: A core-shell zeolite designed with passivated surface acidity. ACS Nano, 2015, 9(4): 4006–4016
https://doi.org/10.1021/acsnano.5b01308
90 C Peng, Z Liu, Y Yonezawa, Y Yanaba, N Katada, I Murayama, S Segoshi, T Okubo, T Wakihara. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277: 197–202
https://doi.org/10.1016/j.micromeso.2018.10.036
91 N Li, Y Y Zhang, L Chen, C T Au, S F Yin. Synthesis and application of HZSM-5@silicalite-1 core-shell composites for the generation of light olefins from CH3Br. Microporous and Mesoporous Materials, 2016, 227: 76–80
https://doi.org/10.1016/j.micromeso.2016.02.017
92 Y Zhai, S Zhang, Y Shang, Y Song, W Wang, T Ma, L Zhang, Y Gong, J Xu, F Deng. Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science & Technology, 2019, 9(3): 659–671
https://doi.org/10.1039/C8CY02177E
93 M Miyamoto, T Kamei, N Nishiyama, Y Egashira, K Ueyama. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988
https://doi.org/10.1002/adma.200500522
94 D Van Vu, M Miyamoto, N Nishiyama, S Ichikawa, Y Egashira, K Ueyama. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials, 2008, 115(1–2): 106–112
95 D Vanvu, M Miyamoto, N Nishiyama, Y Egashira, K Ueyama. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis, 2006, 243(2): 389–394
https://doi.org/10.1016/j.jcat.2006.07.028
96 W Zhou, S Y Zhang, X Y Hao, H Guo, C Zhang, Y Q Zhang, S X Liu. MFI-type boroaluminosilicate: A comparative study between the direct synthesis and the templating method. Journal of Solid State Chemistry, 2006, 179(3): 855–865
https://doi.org/10.1016/j.jssc.2005.12.013
97 X F Su, G L Wang, X F Bai, W Wu, L F Xiao, Y J Fang, J W Zhang. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375
https://doi.org/10.1016/j.cej.2016.02.088
98 C Y Hsieh, Y Y Chen, Y C Lin. Ga-substituted nanoscale HZSM-5 in methanol aromatization: The cooperative action of the bronsted acid and the extra-framework Ga species. Industrial & Engineering Chemistry Research, 2018, 57(23): 7742–7751
https://doi.org/10.1021/acs.iecr.8b00126
99 X Jiang, X F Su, X F Bai, Y Z Li, L Yang, K Zhang, Y Zhang, Y Liu, W Wu. Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous and Mesoporous Materials, 2018, 263: 243–250
https://doi.org/10.1016/j.micromeso.2017.12.029
100 F R Qiu, X B Wang, X F Zhang, H Liu, S Q Liu, K L Yeung. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147(2–3): 316–322
https://doi.org/10.1016/j.cej.2008.11.034
101 D P Serrano, R Sanz, P Pizarro, I Moreno. Synthesis of hierarchical TS-1 zeolite from silanized seeds. Topics in Catalysis, 2010, 53(19–20): 1319–1329
https://doi.org/10.1007/s11244-010-9590-9
102 W L Song, B Zhang, L F Chen, J Shi, X W Cheng, L H Wu, W M Yang, J Zhou, Y H Zhang, Y W Tao, Y Tang. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: The role of the zeolite shell on light-olefin production. Catalysis Science & Technology, 2016, 6(10): 3559–3567
https://doi.org/10.1039/C5CY01144B
103 J Shi, L F Chen, N Ren, Y H Zhang, Y Tang. Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone. Chemical Communications, 2012, 48(68): 8583–8585
https://doi.org/10.1039/c2cc33701k
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed