Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 365-377   https://doi.org/10.1007/s11705-019-1863-7
  本期目录
Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment
Jayshree Ashree1, Qi Wang2, Yimin Chao1()
1. School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
2. Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
 全文: PDF(4362 KB)   HTML
Abstract

Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.

Key wordscarbohydrate    leptin    glyco-functionalised QD    bioimaging    cancer diagnosis and treatment
收稿日期: 2019-03-25      出版日期: 2020-04-28
Corresponding Author(s): Yimin Chao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 365-377.
Jayshree Ashree, Qi Wang, Yimin Chao. Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment. Front. Chem. Sci. Eng., 2020, 14(3): 365-377.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1863-7
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/365
Fig.1  
Application Carbohydrate detection Lectin Types of QDs Cancer model Ref.
Cancer diagnosis Glucose/mannose and L-fucose profile Con A, UEA I MSA-CdTe QDsa) Fibroadenoma and invasive ductal carcinoma cells [49]
Cancer detection GalNAc , GlcNAc and mannose profiles DSA, LCA TGA-CdTe QDsb) HepG2 cells [50]
Cancer diagnosis Mannose/glucose, and galactose profile Cramoll CdTe QDs [51]
Cancer theranostics Mannose triflate, cysteamine molecules (MTC) SNA lectin CdSe/CdS Caco-2, MCF-7 and A549 cells [52]
Cancer theranostics ? PHA-L CdSe/CdS QDs MCF-7 cells [53]
Tab.1  
Fig.2  
Applications Carbohydrate Types of QDs Targeting receptor Cancer model Ref.
Cancer imaging SialylLacNAc, LacNAc, Lex PC-QDs ? Mice model [55]
Cancer cell imaging Mannose and galactose CdSe/ZnS-TOPO QDs Asialoglycoprotein receptors HepG2 cells [56]
Cancer cell imaging β-Galactose and α-glucose CdTe/CdS QDs Asialoglycoprotein receptors, glucose receptor HepG2 cells [57]
Cancer cell imaging a-Glucose, a-N-acetylglucose, b-galactose, mannose or sialic acid ZnS-AgInS2 QDs Asialoglycoprotein receptors Leukemia (THP-1), macrophage (J774.A1) and HepG2 cells [58]
Cancer cell imaging D-Mannose Silicon QDs ? MCF-7 cells [59]
Cancer cell imaging Glucose, lactose Silicon QDs ? B16F10 melanoma cells [60]
Cancer cell imaging Glucose Silicon QDs ? HeLa cells [61]
Cancer targeting Galactose CdTe/ZnS-TOPO Asialoglycoprotein receptors HeLa and A549 cells [62]
Cancer targeting D-Mannose Silicon QDs ? MCF-7 cells [63]
Cancer targeting Galactose, glucose, mannose, and lactose Silicon QDs ? MCF-7, HepG2, A549, SK-Mel, HHL5, HeLa cells [64]
Cancer targeting Galactose CdSe-ZnS QDs Galactose receptors HepG2 and HeLa cells [65]
Cancer theranostics Mannose Albumin-CdTe QDs ? MCF-7 and MDA-MB-231 cells, Ehrlich ascites tumour in BALB/C mice [66]
Tab.2  
Fig.3  
Fig.4  
Fig.5  
1 L A Bentolila, Y Ebenstein, S Weiss. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2009, 50(4): 493–496
https://doi.org/10.2967/jnumed.108.053561
2 R J Byers, E R Hitchman. Quantum dots brighten biological imaging. Progress in Histochemistry and Cytochemistry, 2011, 45(4): 201–237
https://doi.org/10.1016/j.proghi.2010.11.001
3 E Tholouli, E Sweeney, E Barrow, V Clay, J Hoyland, R Byers. Quantum dots light up pathology. Journal of Pathology, 2008, 216(3): 275–285
https://doi.org/10.1002/path.2421
4 X He, J Gao, S S Gambhir, Z Cheng. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends in Molecular Medicine, 2010, 16(12): 574–583
https://doi.org/10.1016/j.molmed.2010.08.006
5 S A Hilderbrand, R Weissleder. Near-infrared fluorescence: Application to in vivo molecular imaging. Current Opinion in Chemical Biology, 2010, 14(1): 71–79
https://doi.org/10.1016/j.cbpa.2009.09.029
6 Y Wang, L Chen. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (London), 2011, 7(4): 385–402
https://doi.org/10.1016/j.nano.2010.12.006
7 A Varki, R D Cummings, J D Esko, H H Freeze, P Stanley, C R Bertozzi, G W Hart, M E Etzler. Essentials of Glycobiology. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2009
8 E C Calvaresi, P J Hergenrother. Glucose conjugation for the specific targeting and treatment of cancer. Chemical Science (Cambridge), 2013, 4(6): 2319–2333
https://doi.org/10.1039/c3sc22205e
9 N Kottari, Y M Chabre, R Sharma, R Roy. Applications of glyconanoparticles as “sweet” glycobiological therapeutics and diagnostics. In: Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Dutta P K, Dutta J, eds. Berlin: Springer International Publishing, 2013
10 M Marradi, F Chiodo, I Garcia, S Penades. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 2013, 42(11): 4728–4745
https://doi.org/10.1039/c2cs35420a
11 J Luczkowiak, A Munoz, M Sanchez-Navarro, R Ribeiro-Viana, A Ginieis, B M Illescas, N Martin, R Delgado, J Rojo. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2): 431–437
https://doi.org/10.1021/bm3016658
12 R Ribeiro-Viana, M Sánchez-Navarro, J Luczkowiak, J R Koeppe, R Delgado, J Rojo, B G Davis. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature Communications, 2012, 3(1): 1303
https://doi.org/10.1038/ncomms2302
13 C Fasting, C A Schalley, M Weber, O Seitz, S Hecht, B Koksch, J Dernedde, C Graf, E W Knapp, R Haag. Multivalency as a chemical organization and action principle. Angewandte Chemie International Edition, 2012, 51(42): 10472–10498
https://doi.org/10.1002/anie.201201114
14 B Liu, X Lu, H Ruan, J Cui, H Li. Synthesis and applications of glyconanoparticles. Current Organic Chemistry, 2016, 20(14): 1502–1511
https://doi.org/10.2174/1385272820666151207194453
15 N C Reichardt, M Martin-Lomas, S Penades. Glyconanotechnology. Chemical Society Reviews, 2013, 42(10): 4358–4376
https://doi.org/10.1039/c2cs35427f
16 N Sharon, H Lis. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11): 53R–62R
https://doi.org/10.1093/glycob/cwh122
17 N Sharon, H Lis. Lectins as cell recognition molecules. Science, 1989, 246(4927): 227–234
https://doi.org/10.1126/science.2552581
18 G Ashwell, J Harford. Carbohydrate-specific receptors of the liver. Annual Review of Biochemistry, 1982, 51(1): 531–554
https://doi.org/10.1146/annurev.bi.51.070182.002531
19 B Belardi, C R Bertozzi. Chemical lectinology: Tools for probing the ligands and dynamics of mammalian lectins in vivo. Chemistry & Biology, 2015, 22(8): 983–993
https://doi.org/10.1016/j.chembiol.2015.07.009
20 S André , H Kaltner, J C Manning, P V Murphy, H J Gabius. Lectins: Getting familiar with translators of the sugar code. Molecules (Basel, Switzerland), 2015, 20(2): 1788–1823
https://doi.org/10.3390/molecules20021788
21 A Surolia, B K Bachhawat, S K Podder. Interaction between lectin from ricinus communis and liposomes containing gangliosides. Nature, 1975, 257(5529): 802–804
https://doi.org/10.1038/257802a0
22 I Häuselmann, L Borsig. Altered tumor-cell glycosylation promotes metastasis. Frontiers in Oncology, 2014, 4: 28
https://doi.org/10.3389/fonc.2014.00028
23 M Friedel, S Andre, H Goldschmidt, H J Gabius, R Schwartz-Albiez. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Glycobiology, 2016, 26(10): 1048–1058
https://doi.org/10.1093/glycob/cww066
24 D Compagno, L D Gentilini, F M Jaworski, I G Pérez, G Contrufo, D J Laderach. Glycans and galectins in prostate cancer biology, angiogenesis and metastasis. Glycobiology, 2014, 24(10): 899–906
https://doi.org/10.1093/glycob/cwu055
25 M H Vazquez-Levin, C I Marin-Briggiler, J N Caballero, M F Veiga. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Developmental Biology, 2015, 401(1): 2–16
https://doi.org/10.1016/j.ydbio.2014.12.029
26 K Ng, J Ferreyra, S Higginbottom, J Lynch, P Kashyap, S Gopinath, N Naidu, B Choudhury, B Weimer, D Monack, J L Sonnenburg. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 2013, 502(7469): 96–99
https://doi.org/10.1038/nature12503
27 C R Becer. The glycopolymer code: Synthesis of glycopolymers and multivalent carbohydrate-lectin interactions. Macromolecular Rapid Communications, 2012, 33(9): 742–752
https://doi.org/10.1002/marc.201200055
28 M Kazunori, H Miki, I Takayasu, Y Yoshinao, K Kazukiyo. Self-organized glycoclusters along DNA: Effect of the spatial arrangement of galactoside residues on cooperative lectin recognition. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(2): 352–359
https://doi.org/10.1002/chem.200305465
29 L E Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. Journal of Chemical Physics, 1984, 80(9): 4403–4409
https://doi.org/10.1063/1.447218
30 A P Alivisatos, W Gu, C Larabell. Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005, 7(1): 55–76
https://doi.org/10.1146/annurev.bioeng.7.060804.100432
31 M Foote. The importance of planned dose of chemotherapy on time: Do we need to change our clinical practice? Oncologist, 1998, 3(5): 365–368
32 G Naumov, L Akslen, J Folkman. Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle (Georgetown, Tex.), 2006, 5(16): 1779–1787
https://doi.org/10.4161/cc.5.16.3018
33 J V Frangioni. New technologies for human cancer imaging. Journal of Clinical Oncology, 2008, 26(24): 4012–4021
https://doi.org/10.1200/JCO.2007.14.3065
34 J Liu, A L Levine, J S Mattoon, M Yamaguchi, R J Lee, X Pan, T J Rosol. Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 2006, 51(9): 2179–2189
https://doi.org/10.1088/0031-9155/51/9/004
35 T F Massoud, S S Gambhir. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes & Development, 2003, 17(5): 545–580
https://doi.org/10.1101/gad.1047403
36 T Albrecht, M J K Blomley, P N Burns, S Wilson, C J Harvey, E Leen, M Claudon, F Calliada, J M Correas, M LaFortune, et al.. Improved detection of hepatic metastases with pulse-inversion US during the liver-specific phase of SHU 508A: Multicenter study. Radiology, 2003, 227(2): 361–370
https://doi.org/10.1148/radiol.2272011833
37 M J Blomley, J C Cooke, E C Unger, M J Monaghan, D O Cosgrove. Microbubble contrast agents: A new era in ultrasound. BMJ (Clinical Research Ed.), 2001, 322(7296): 1222–1225
https://doi.org/10.1136/bmj.322.7296.1222
38 D P Cormode, T Skajaa, Z A Fayad, W J Mulder. Nanotechnology in medical imaging: Probe design and applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(7): 992–1000
https://doi.org/10.1161/ATVBAHA.108.165506
39 R Weissleder. Scaling down imaging: Molecular mapping of cancer in mice. Nature Reviews. Cancer, 2002, 2(1): 8–11
https://doi.org/10.1038/nrc701
40 P Caravan, J J Ellison, T J McMurry, R B Lauffer. Gadolinium(iii) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Reviews, 1999, 99(9): 2293–2352
https://doi.org/10.1021/cr980440x
41 D I Hoult, D Phil. Sensitivity and power deposition in a high-field imaging experiment. Journal of Magnetic Resonance Imaging, 2000, 12(1): 46–67
https://doi.org/10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D
42 S Jongmin, A R Md, K M Kyeong, I G Ho, L J Hee, L I Su. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angewandte Chemie International Edition, 2009, 48(2): 321–324
https://doi.org/10.1002/anie.200802323
43 A M Smith, H Duan, A M Mohs, S Nie. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews, 2008, 60(11): 1226–1240
https://doi.org/10.1016/j.addr.2008.03.015
44 H Zhang, D Yee, C Wang. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine (London), 2008, 3(1): 83–91
https://doi.org/10.2217/17435889.3.1.83
45 H Wang, H Li, W Zhang, L M Wei, H X Yu, P Y Yang. Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics, 2014, 14(1): 78–86
https://doi.org/10.1002/pmic.201200544
46 J Munkley, D J Elliott. Hallmarks of glycosylation in cancer. Oncotarget, 2016, 7(23): 35478–35489
https://doi.org/10.18632/oncotarget.8155
47 X Liu, H Nie, Y B Zhang, Y F Yao, A Maitikabili, Y P Qu, S L Shi, C Y Chen, Y Li. Cell surface-specific N-glycan profiling in breast cancer. PLoS One, 2013, 8(8): 11
https://doi.org/10.1371/journal.pone.0072704
48 E Scott, J Munkley. Glycans as biomarkers in prostate cancer. International Journal of Molecular Sciences, 2019, 20(6): 20
https://doi.org/10.3390/ijms20061389
49 C G Andrade, P E Cabral Filho, D P L Tenório, B S Santos, E I C Beltrão, A Fontes, L B Carvalho. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. International Journal of Nanomedicine, 2013, 8: 4623–4629
50 D He, D Wang, X Shi, W Quan, R Xiong, C Yu, H Huang. Simultaneous fluorescence analysis of the different carbohydrates expressed on living cell surfaces using functionalized quantum dots. RSC Advances, 2017, 7(20): 12374–12381
https://doi.org/10.1039/C6RA27612A
51 C R A Cunha, C G Andrade, M I A Pereira, P E Cabral Filho, L B Carvalho Jr, L C B B Coelho, B S Santos, A Fontes, M T S Correia. Quantum dot-cramoll lectin as novel conjugates to glycobiology. Journal of Photochemistry and Photobiology. B, Biology, 2018, 178: 85–91
https://doi.org/10.1016/j.jphotobiol.2017.10.020
52 O Akca, P Unak, E I Medine, S Sakarya, A Yurt Kilcar, C Ichedef, R Bekis, S Timur. Radioiodine labeled CdSe/CdS quantum dots: Lectin targeted dual probes. Radiochimica Acta, 2014, 102(9): 849
https://doi.org/10.1515/ract-2013-2152
53 A Kara, P Ünak, C Selçuki, Ö Akça, E İ Medine, S Sakarya. PHA-L lectin and carbohydrate relationship: Conjugation with CdSe/CdS nanoparticles, radiolabeling and in vitro affinities on MCF-7 cells. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1): 807–813
https://doi.org/10.1007/s10967-013-2783-5
54 B Santos, P de Farias, F de Menezes, R de Ferreira, S Júnior, R Figueiredo, L de Carvalho, E I C Beltrão. CdS-Cd(OH)2 core shell quantum dots functionalized with concanavalin a lectin for recognition of mammary tumors. Physica Status Solidi. C, Current Topics in Solid State Physics, 2006, 3(11): 4017–4022
https://doi.org/10.1002/pssc.200671568
55 T Ohyanagi, N Nagahori, K Shimawaki, H Hinou, T Yamashita, A Sasaki, T Jin, T Iwanaga, M Kinjo, S I Nishimura. Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots. Journal of the American Chemical Society, 2011, 133(32): 12507–12517
https://doi.org/10.1021/ja111201c
56 H Bavireddi, R Kikkeri. Glyco-β-cyclodextrin capped quantum dots: Synthesis, cytotoxicity and optical detection of carbohydrate-protein interactions. Analyst (London), 2012, 137(21): 5123–5127
https://doi.org/10.1039/c2an35983a
57 H Shinchi, M Wakao, S Nakagawa, E Mochizuki, S Kuwabata, Y Suda. Stable sugar-chain-immobilized fluorescent nanoparticles for probing lectin and cells. Chemistry, an Asian Journal, 2012, 7(11): 2678–2682
https://doi.org/10.1002/asia.201200362
58 H Shinchi, M Wakao, N Nagata, M Sakamoto, E Mochizuki, T Uematsu, S Kuwabata, Y Suda. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells. Bioconjugate Chemistry, 2014, 25(2): 286–295
https://doi.org/10.1021/bc400425w
59 Y Zhai, M Dasog, R B Snitynsky, T K Purkait, M Aghajamali, A H Hahn, C B Sturdy, T L Lowary, J G C Veinot. Water-soluble photoluminescent D-mannose and L-alanine functionalized silicon nanocrystals and their application to cancer cell imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(47): 8427–8433
https://doi.org/10.1039/C4TB01161A
60 C H Lai, J Hütter, C W Hsu, H Tanaka, S Varela-Aramburu, L De Cola, B Lepenies, P H Seeberger. Analysis of carbohydrate-carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Letters, 2016, 16(1): 807–811
https://doi.org/10.1021/acs.nanolett.5b04984
61 C W Hsu, D Septiadi, C H Lai, P K Chen, P H Seeberger, L De Cola. Glucose-modified silicon nanoparticles for cellular imaging. ChemPlusChem, 2017, 82(4): 660–667
https://doi.org/10.1002/cplu.201700054
62 F F Cheng, G X Liang, Y Y Shen, R K Rana, J J Zhu. N-Acetylglucosamine biofunctionalized CdSeTe quantum dots as fluorescence probe for specific protein recognition. Analyst (London), 2013, 138(2): 666–670
https://doi.org/10.1039/C2AN36434D
63 J H Ahire, I Chambrier, A Mueller, Y Bao, Y Chao. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Applied Materials & Interfaces, 2013, 5(15): 7384–7391
https://doi.org/10.1021/am4017126
64 J H Ahire, M Behray, C A Webster, Q Wang, V Sherwood, N Saengkrit, U Ruktanonchai, N Woramongkolchai, Y Chao. Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake. Advanced Healthcare Materials, 2015, 4(12): 1877–1886
https://doi.org/10.1002/adhm.201500298
65 C Dalal, N R Jana. Galactose multivalency effect on the cell uptake mechanism of bioconjugated nanoparticles. Journal of Physical Chemistry C, 2018, 122(44): 25651–25660
https://doi.org/10.1021/acs.jpcc.8b08047
66 D G Zayed, S M Ebrahim, M W Helmy, S N Khattab, M Bahey-El-Din, J Y Fang, K A Elkhodairy, A O Elzoghby. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: Covalent coupling and phospholipid complexation approaches. Journal of Nanobiotechnology, 2019, 17(1): 19
https://doi.org/10.1186/s12951-019-0445-7
67 C Yin, L Ying, P C Zhang, R X Zhuo, E T Kang, K W Leong, H Q Mao. High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of Biomedical Materials Research. Part A, 2003, 67A(4): 1093–1104
https://doi.org/10.1002/jbm.a.10033
68 S Hata, K Ishii. Effect of galactose on binding and endocytosis of asiaioglycoprotein in cultured rat hepatocytes. Annals of Nuclear Medicine, 1998, 12(5): 255–259
https://doi.org/10.1007/BF03164910
69 N Mishra, N P Yadav, V K Rai, P Sinha, K S Yadav, S Jain, S Arora. Efficient hepatic delivery of drugs: Novel strategies and their significance. BioMed Research International, 2013, 2013: 20
https://doi.org/10.1155/2013/382184
70 S Yousef, H O Alsaab, S Sau, A K Iyer. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4(12): e01071
https://doi.org/10.1016/j.heliyon.2018.e01071
71 S Pranatharthiharan, M D Patel, V C Malshe, V Pujari, A Gorakshakar, M Madkaikar, K Ghosh, P V Devarajan. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Delivery, 2017, 24(1): 20–29
https://doi.org/10.1080/10717544.2016.1225856
72 M Abe, J B Manola, W K Oh, D L Parslow, D J George, C L Austin, P W Kantoff. Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clinical Prostate Cancer, 2004, 3(1): 49–53
https://doi.org/10.3816/CGC.2004.n.013
73 D R Ciocca, S K Calderwood. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 2005, 10(2): 86–103
https://doi.org/10.1379/CSC-99r.1
74 C Garrido, M Brunet, C Didelot, Y Zermati, E Schmitt, G Kroemer. Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle (Georgetown, Tex.), 2006, 5(22): 2592–2601
https://doi.org/10.4161/cc.5.22.3448
75 J H Ahire, Q Wang, P R Coxon, G Malhotra, R Brydson, R Chen, Y Chao. Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: Synthesis and their use in biomedical imaging. ACS Applied Materials & Interfaces, 2012, 4(6): 3285–3292
https://doi.org/10.1021/am300642m
76 L W Zhang, N A Monteiro-Riviere. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicological Sciences, 2009, 110(1): 138–155
https://doi.org/10.1093/toxsci/kfp087
77 F L Yuan, S H Li, Z T Fan, X Y Meng, L Z Fan, S H Yang. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11(5): 565–586
https://doi.org/10.1016/j.nantod.2016.08.006
78 M Zhang, L L Bai, W H Shang, W J Xie, H Ma, Y Y Fu, D C Fang, H Sun, L Z Fan, M Han, et al.. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22(15): 7461–7467
https://doi.org/10.1039/c2jm16835a
79 Z T Fan, S X Zhou, C Garcia, L Z Fan, J B Zhou. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9(15): 4928–4933
https://doi.org/10.1039/C7NR00888K
80 Q Wang, Y Bao, X Zhang, P R Coxon, U A Jayasooriya, Y Chao. Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Advanced Healthcare Materials, 2012, 1(2): 189–198
https://doi.org/10.1002/adhm.201100010
81 J H Park, L Gu, G von Maltzahn, E Ruoslahti, S N Bhatia, M J Sailor. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 2009, 8(4): 331–336
https://doi.org/10.1038/nmat2398
82 H Chen, S Cui, Z Tu, Y Gu, X Chi. In vivo monitoring of organ-selective distribution of cdhgte/SiO2 nanoparticles in mouse model. Journal of Fluorescence, 2012, 22(2): 699–706
https://doi.org/10.1007/s10895-011-1005-1
83 Y Qu, W Li, Y Zhou, X Liu, L Zhang, L Wang, Y F Li, A Iida, Z Tang, Y Zhao, et al.. Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism. Nano Letters, 2011, 11(8): 3174–3183
https://doi.org/10.1021/nl201391e
84 M L Schipper, G Iyer, A L Koh, Z Cheng, Y Ebenstein, A Aharoni, S Keren, L A Bentolila, J Li, J Rao, et al.. Particle size, surface coating, and pegylation influence the biodistribution of quantum dots in living mice. Small, 2009, 5(1): 126–134
https://doi.org/10.1002/smll.200800003
85 HS Choi, W Liu, P Misra, E Tanaka, J P Zimmer, B I Ipe, M G Bawendi, J V Frangioni. Renal clearance of quantum dots. Nature Biotechnology, 2007, 25(10): 1165–1170
https://doi.org/10.1038/nbt1340
86 Y Zhu, H Hong, Z P Xu, Z Li, W Cai. Quantum dot-based nanoprobes for in vivo targeted imaging. Current Molecular Medicine, 2013, 13(10): 1549–1567
https://doi.org/10.2174/1566524013666131111121733
87 J E Vela-Ramirez, J T Goodman, P M Boggiatto, R Roychoudhury, N L B Pohl, J M Hostetter, M J Wannemuehler, B Narasimhan. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS Journal, 2015, 17(1): 256–267
https://doi.org/10.1208/s12248-014-9699-z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed