Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (5): 880-888   https://doi.org/10.1007/s11705-019-1864-6
  本期目录
Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4
Yang An1, Chao Chen1, Jundong Zhu1, Pankaj Dwivedi2, Yanjun Zhao1(), Zheng Wang1()
1. School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
2. School of Engineering Science,?University of Science and Technology of China, Hefei 230027,?China
 全文: PDF(1217 KB)   HTML
Abstract

The conformation-dependent activity of azobenzene combretastatin A4 (Azo-CA4) provides a unique approach to reduce the side-effects of chemotherapy, due to the light-triggered conformation transition of its azobenzene moiety. Under hypoxic tumor microenvironment, however, the high expression of azoreductase can reduce azobenzene to aniline. It was postulated that the Azo-CA4 might be degraded under hypoxia, resulting in the decrease of its anti-tumor activity. The aim of this study was to verify such hypothesis in HeLa cells in vitro. The quantitative drug concentration analysis shows the ratiometric formation of degradation end-products, confirming the bioreduction of Azo-CA4. The tubulin staining study indicates that Azo-CA4 loses the potency of switching off microtubule dynamics under hypoxia. Furthermore, the cell cycle analysis shows that the ability of Azo-CA4 to induce mitotic arrest is lost at low oxygen content. Therefore, the cytotoxicity of Azo-CA4 is compromised under hypoxia. In contrast, combretastatin A4 as a positive control maintains the potency to inhibit tubulin polymerization and break down the nuclei irrespective of light irradiation and oxygen level. This work highlights the influence of hypoxic tumor microenvironment on the anti-tumor potency of Azo-CA4, which should be considered during the early stage of designing translational Azo-CA4 delivery systems.

Key wordshypoxia    microtubule inhibitor    drug delivery    azo-combretastatin A4    photo-responsive
收稿日期: 2019-04-20      出版日期: 2020-05-25
Corresponding Author(s): Yanjun Zhao,Zheng Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 880-888.
Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front. Chem. Sci. Eng., 2020, 14(5): 880-888.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1864-6
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I5/880
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 J E Mollman. Cisplatin neurotoxicity. New England Journal of Medicine, 1990, 322(2): 126–127
https://doi.org/10.1056/NEJM199001113220210
2 P K Singal, N Iliskovic. Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 1998, 339(13): 900–905
https://doi.org/10.1056/NEJM199809243391307
3 Y H Bae, K Park. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 2011, 153(3): 198–205
https://doi.org/10.1016/j.jconrel.2011.06.001
4 D Lu, R Tao, Z Wang. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323
https://doi.org/10.1007/s11705-018-1750-7
5 I K Kwon, S C Lee, B Han, K Park. Analysis on the current status of targeted drug delivery to tumors. Journal of Controlled Release, 2012, 164(2): 108–114
https://doi.org/10.1016/j.jconrel.2012.07.010
6 S Wilhelm, A J Tavares, Q Dai, S Ohta, J Audet, H F Dvorak, W C W Chan. Analysis of nanoparticle delivery to tumours. Nature Reviews. Materials, 2016, 1(5): 1–12
https://doi.org/10.1038/natrevmats.2016.14
7 Q Hu, H N Bomba, Z Gu. Engineering platelet-mimicking drug delivery vehicles. Frontiers of Chemical Science and Engineering, 2017, 11(4): 624–632
https://doi.org/10.1007/s11705-017-1614-6
8 K Xin, M Li, D Lu, X Meng, J Deng, D Kong, D Ding, Z Wang, Y Zhao. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Applied Materials & Interfaces, 2017, 9(1): 80–91
https://doi.org/10.1021/acsami.6b09425
9 Q Hu, W Sun, C Wang, Z Gu. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34
https://doi.org/10.1016/j.addr.2015.10.022
10 R M Webster. Combination therapies in oncology. Nature Reviews. Drug Discovery, 2016, 15(2): 81–82
https://doi.org/10.1038/nrd.2016.3
11 J H Doroshow, R M Simon. On the design of combination cancer therapy. Cell, 2017, 171(7): 1476–1478
https://doi.org/10.1016/j.cell.2017.11.035
12 H Li, M Li, C Chen, A Fan, D Kong, Z Wang, Y Zhao. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. International Journal of Pharmaceutics, 2015, 495(1): 572–578
https://doi.org/10.1016/j.ijpharm.2015.09.022
13 H Maeda. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews, 2015, 91: 3–6
https://doi.org/10.1016/j.addr.2015.01.002
14 D Peer, J M Karp, S Hong, O C Farokhzad, R Margalit, R Langer. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760
https://doi.org/10.1038/nnano.2007.387
15 P Zhang, J Ye, E Liu, J Sun, S J Zhang, J Lee, J Gong, H He, V C Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536
https://doi.org/10.1007/s11705-017-1645-z
16 S Mura, J Nicolas, P Couvreur. Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12(11): 991–1003
https://doi.org/10.1038/nmat3776
17 V P Torchilin. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews. Drug Discovery, 2014, 13(11): 813–827
https://doi.org/10.1038/nrd4333
18 X Li, M Gao, K Xin, L Zhang, D Ding, D Kong, Z Wang, Y Shi, F Kiessling, T Lammers, J Cheng, Y Zhao. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21
https://doi.org/10.1016/j.jconrel.2017.05.025
19 R Tao, M Gao, F Liu, X Guo, A Fan, D Ding, D Kong, Z Wang, Y Zhao. Alleviating the liver toxicity of chemotherapy via pH-responsive hepatoprotective prodrug micelles. ACS Applied Materials & Interfaces, 2018, 10(26): 21836–21846
https://doi.org/10.1021/acsami.8b04192
20 J Gao, J Li, W C Geng, F Y Chen, X Duan, Z Zheng, D Ding, D S Guo. Biomarker displacement activation: A general host-guest strategy for targeted phototheranostics in vivo. Journal of the American Chemical Society, 2018, 140(14): 4945–4953
https://doi.org/10.1021/jacs.8b02331
21 H He, L Sun, J Ye, E Liu, S Chen, Q Liang, M C Shin, V C Yang. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. Journal of Controlled Release, 2016, 240: 67–76
https://doi.org/10.1016/j.jconrel.2015.10.040
22 C Chen, J Zhao, M Gao, X Meng, A Fan, Z Wang, Y Zhao. Photo-triggered micelles: Simultaneous activation and release of microtubule inhibitors for on-demand chemotherapy. Biomaterials Science, 2018, 6(3): 511–518
https://doi.org/10.1039/C7BM01053B
23 Y Liu, Y Liu, W Bu, C Cheng, C Zuo, Q Xiao, Y Sun, D Ni, C Zhang, J Liu, J Shi. Hypoxia induced by upconversion-based photodynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angewandte Chemie International Edition, 2015, 54(28): 8105–8109
https://doi.org/10.1002/anie.201500478
24 M Borowiak, W Nahaboo, M Reynders, K Nekolla, P Jalinot, J Hasserodt, M Rehberg, M Delattre, S Zahler, A Vollmar, D Trauner, O Thorn-Seshold. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell, 2015, 162(2): 403–411
https://doi.org/10.1016/j.cell.2015.06.049
25 A J Engdahl, E A Torres, S E Lock, T B Engdahl, P S Mertz, C N Streu. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Organic Letters, 2015, 17(18): 4546–4549
https://doi.org/10.1021/acs.orglett.5b02262
26 J E Sheldon, M M Dcona, C E Lyons, J C Hackett, M C Hartman. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Organic & Biomolecular Chemistry, 2016, 14(1): 40–49
https://doi.org/10.1039/C5OB02005K
27 S K Rastogi, Z Zhao, S L Barrett, S D Shelton, M Zafferani, H E Anderson, M O Blumenthal, L R Jones, L Wang, X Li, C N Streu, L Du, W J Brittain. Photoresponsive azo-combretastatin A-4 analogues. European Journal of Medicinal Chemistry, 2018, 143: 1–7
https://doi.org/10.1016/j.ejmech.2017.11.012
28 A Muroyama, T Lechler. Microtubule organization, dynamics and functions in differentiated cells. Development, 2017, 144(17): 3012–3021
https://doi.org/10.1242/dev.153171
29 B T Castle, D J Odde. Optical control of microtubule dynamics in time and space. Cell, 2015, 162(2): 243–245
https://doi.org/10.1016/j.cell.2015.06.064
30 F Perche, S Biswas, T Wang, L Zhu, V P Torchilin. Hypoxia-targeted siRNA delivery. Angewandte Chemie International Edition, 2014, 53(13): 3362–3366
https://doi.org/10.1002/anie.201308368
31 J Li, X Meng, J Deng, D Lu, X Zhang, Y Chen, J Zhu, A Fan, D Ding, D Kong, Z Wang, Y Zhao. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128
https://doi.org/10.1021/acsami.8b06299
32 D Hanahan, R A Weinberg. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
33 E B Rankin, A J Giaccia. Hypoxic control of metastasis. Science, 2016, 352(6282): 175–180
https://doi.org/10.1126/science.aaf4405
34 J Tang, C Huang, J Shu, J Zheng, D Ma, J Li, R Yang. Azoreductase and target simultaneously activated fluorescent monitoring for cytochrome c release under hypoxia. Analytical Chemistry, 2018, 90(9): 5865–5872
https://doi.org/10.1021/acs.analchem.8b00554
35 L Wang, X Huang, B Wang, J Zhao, X Guo, Z Wang, Y Zhao. Mechanistic insight into the singlet oxygen-triggered expansion of hypoxia-responsive polymeric micelles. Biomaterials Science, 2018, 6(7): 1712–1716
https://doi.org/10.1039/C8BM00369F
36 M Li, M Gao, Y Fu, C Chen, X Meng, A Fan, D Kong, Z Wang, Y Zhao. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloids and Surfaces. B, Biointerfaces, 2016, 140: 11–18
https://doi.org/10.1016/j.colsurfb.2015.12.025
37 A A Beharry, G A Woolley. Azobenzene photoswitches for biomolecules. Chemical Society Reviews, 2011, 40(8): 4422–4437
https://doi.org/10.1039/c1cs15023e
38 W Piao, K Hanaoka, T Fujisawa, S Takeuchi, T Komatsu, T Ueno, T Terai, T Tahara, T Nagano, Y Urano. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy. Journal of the American Chemical Society, 2017, 139(39): 13713–13719
https://doi.org/10.1021/jacs.7b05019
39 P Verwilst, J Han, J Lee, S Mun, H G Kang, J S Kim. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials, 2017, 115: 104–114
https://doi.org/10.1016/j.biomaterials.2016.11.023
40 M Dong, A Babalhavaeji, S Samanta, A A Beharry, G A Woolley. Red-shifting azobenzene photoswitches for in vivo use. Accounts of Chemical Research, 2015, 48(10): 2662–2670
https://doi.org/10.1021/acs.accounts.5b00270
41 S Wu, H J Butt. Near-infrared-sensitive materials based on upconverting nanoparticles. Advanced Materials, 2016, 28(6): 1208–1226
https://doi.org/10.1002/adma.201502843
42 H M Bandara, T R Friss, M M Enriquez, W Isley, C Incarvito, H A Frank, J Gascon, S C Burdette. Proof for the concerted inversion mechanism in the trans-cis isomerization of azobenzene using hydrogen bonding to induce isomer locking. Journal of Organic Chemistry, 2010, 75(14): 4817–4827
https://doi.org/10.1021/jo100866m
43 A Aliprandi, M Mauro, L De Cola. Controlling and imaging biomimetic self-assembly. Nature Chemistry, 2016, 8(1): 10–15
https://doi.org/10.1038/nchem.2383
44 L Meng, Y Cheng, S Gan, Z Zhang, X Tong, L Xu, X Jiang, Y Zhu, J Wu, A Yuan, Y Hu. Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Molecular Pharmaceutics, 2018, 15(2): 447–457
https://doi.org/10.1021/acs.molpharmaceut.7b00808
45 Y Sheng, H Nesbitt, B Callan, M A Taylor, M Love, A P McHale, J F Callan. Oxygen generating nanoparticles for improved photodynamic therapy of hypoxic tumours. Journal of Controlled Release, 2017, 264: 333–340
https://doi.org/10.1016/j.jconrel.2017.09.004
46 Y Cheng, H Cheng, C Jiang, X Qiu, K Wang, W Huan, A Yuan, J Wu, Y Hu. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nature Communications, 2015, 6(1): 8785
https://doi.org/10.1038/ncomms9785
47 S Kolemen, T Ozdemir, D Lee, G M Kim, T Karatas, J Yoon, E U Akkaya. Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: Towards a paradigm change in photodynamic therapy. Angewandte Chemie International Edition, 2016, 55(11): 3606–3610
https://doi.org/10.1002/anie.201510064
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed