Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (6): 1112-1121   https://doi.org/10.1007/s11705-019-1865-5
  本期目录
Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid
Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang()
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
 全文: PDF(5846 KB)   HTML
Abstract

The gelating properties and thermotropic behaviors of stoichiometric mixtures of aromatic amides 1, 2, and the aromatic Schiff base 3 with tartaric acid (TA) were investigated. Among the three gelators, 2-TA exhibited superior gelating ability. Mixture 2-TA exhibits a smectic B phase and an unidentified smectic mesophase during both heating and cooling runs. The results of Fourier transform infrared spectroscopy and X-ray diffraction revealed the existence of hydrogen bonding and p-p interactions in 2-TA systems, which are likely to be the dominant driving forces for the supramolecular self-assembly. Additionally, it was established that all of the studied gel self-assemblies and mesophases possess a lamellar structure. The anion response ability of the tetrahydrofuran gel of 2-TA was evaluated and it was found that it was responsive to the stimuli of F, Cl, Br, I, AcO.

Key wordssupramolecular self-assembly    organogel    liquid crystal    tartaric acid    hydrogen bond
收稿日期: 2019-04-20      出版日期: 2020-09-11
Corresponding Author(s): Yaodong Huang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1112-1121.
Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1865-5
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I6/1112
Fig.1  
Solvent 1-TA 2-TA 3-TA
Methanol SP 23.7 PG
Ethanol SP 43.5 38.2
2-Propanol S 32.7 PG
n-Hexanol 53.4 23.7 PG
CH2Cl2 S 52.8 PG
Chloroform S 16.2 (t) S
Carbon tetrachloride PG 52.8 SP
Hexane SP Ins PG
Cyclohexane 26.7 Ins PG
Diethyl ether Ins Ins PG
Petroleum ether Ins Ins SP
Dioxane PG 29.7 PG
Tetrahydrofuran S 11.7 58.2
Acetone PG 19.2 16.3
Ethyl acetate SP 1.5 (t) 33.0
Benzene S 20.7 (t) S
Toluene S 38.9 S
Xylene S 29.7 S
Chlorobenzene S 8.8 (t) S
Pyridine 107.6 52.8 S
Acetonitrile PG 23.7 PG
Triethylamine PG Ins S
N,N-Dimethyl formamide 105.5 14.6 58.2
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
2 Powder/cm–1 2-TA gel/cm–1 TA Powder/cm–1
u(N–H) 3343 3336
u(C=O) 1681 1692 1730?1720
u(–OH) 3238 3640?3610
u(C=N) 1594 1591
uas(CH2) 2914 2921
us(CH2) 2847 2853
d(N–H) 1524 1507
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Procedure Transition Temperature/°C DH/(kcal?mol–1)
Heating Cr→ Sm X 106.50 6.5
Sm X→Sm B 154.45 2.0
Sm B→ I 177.35 3.8
Cooling I→ Sm B 168.87 –3.9
Sm B→Sm X 147.71 –1.9
Sm X→ Cr 90.68 –11.8
Tab.3  
Fig.10  
1 S Bhattacharjee, S Bhattacharya. Orotic acid as a useful supramolecular synthon for the fabrication of an OPV based hydrogel: stoichiometry dependent injectable behavior. Chemical Communications, 2015, 51(31): 6765–6768
https://doi.org/10.1039/C5CC01002K
2 J Raeburn, D J Adams. Multicomponent low molecular weight gelators. Chemical Communications, 2015, 51(25): 5170–5180
https://doi.org/10.1039/C4CC08626K
3 L E Buerkle, S J Rowan. Supramolecular gels formed from multi-component low molecular weight species. Chemical Society Reviews, 2012, 41(18): 6089–6102
https://doi.org/10.1039/c2cs35106d
4 M H Liu, G H Quyang, D Niu, Y Sang. Supramolecular gelaton: Towards the design of molecular gels. Organic Chemistry Frontiers : An International Journal of Organic Chemistry / Royal Society of Chemistry, 2018, 5(19): 2885–2900
https://doi.org/10.1039/C8QO00620B
5 T Tu, H B Zhu, W W Fang, Y Zhang, J J Wu, C Liu. Advance between supramolecular gels and catalysis. Chemistry, an Asian Journal, 2018, 13(7): 712–729
https://doi.org/10.1002/asia.201800017
6 I Verma, N Rajeev, G Mohiuddin, S K Pal. Ordering transitions in liquid crystals triggered by bioactive cyclic amphiphiles: Potential application in label-free detection of amyloidogenic peptides. Journal of Physical Chemistry C, 2019, 123(11): 6526–6536
https://doi.org/10.1021/acs.jpcc.8b11953
7 T Kato, N Mizoshita, K Kishimoto. Functional liquid-crystalline assemblies: Self-organized soft materials. Angewandte Chemie International Edition, 2006, 45(1): 38–68
https://doi.org/10.1002/anie.200501384
8 L Y Wang, S X Liu, H M Li, Y D Huang. Preparation and properties of the two-component hydrogels based on pyrazine dicarboxylic acid and melamine. Chemical Journal of Chinese Universities, 2017, 38(5): 806–813
9 R D Mahapatra, J Dey. Instant gels from mixtures of amines and anhydrides at room temperature. Colloids and Surfaces. B, Biointerfaces, 2016, 147: 422–433
https://doi.org/10.1016/j.colsurfb.2016.08.026
10 K Hamaguchi, D Kuo, M M Liu, T Sakamoto, M Yoshio, H Katayama, T Kato. Nanostructured virus filtration membranes based on two component columnar liquid crystals. ACS Macro Letters, 2019, 8(1): 24–30
https://doi.org/10.1021/acsmacrolett.8b00821
11 T Mahalingam, T Venkatachalam, R Jayaprakasam, V N Vijayakumar. Structural and thermo-optic studies on linear double hydrogen bonded ferroelectric liquid crystal homologous series. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2016, 641(1): 10–24
https://doi.org/10.1080/15421406.2016.1235927
12 J H Yang, L A Christianson, S H Gellman. Comparison of an HXH three-center hydrogen bond with alternative two-center hydrogen bonds in a model system. Organic Letters, 1999, 1(1): 11–13
https://doi.org/10.1021/ol9900010
13 B Deebika, S Balamurugan, P Kannan. Liquid crystalline H-bonded polymers influenced by chiral and achiral spacers. Journal of Polymer Research, 2012, 19(7): 9920–684
https://doi.org/10.1007/s10965-012-9920-7
14 D Yamaguchi, H Eimura, M Yoshio, T Kato. Redox-active supramolecular fibers of a nitronyl nitroxide-based gelator. Chemistry Letters, 2016, 45(8): 863–865
https://doi.org/10.1246/cl.160441
15 Y Takemoto, Y Uchida, S Shimono, J Yamauchi, R Tamura. Preparation and magnetic properties of nitroxide radical liquid crystalline physical gels. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2017, 647(1): 279–289
https://doi.org/10.1080/15421406.2017.1289611
16 Y Huang, X Zhang, W Cui, X Wang, B Li, Y Zhang, J Yang. Novel liquid crystalline organogelators based on terephthalic acid and terephthalaldehyde derivatives: Properties and promotion through the formation of halogen bonding. New Journal of Chemistry, 2020, 44(2): 614–625
https://doi.org/10.1039/C9NJ05811G
17 C Y Bao, R Lu, M Jin, P C Xue, C H Tan, G F Liu, Y Zhao. Zhao Y Y. L-Tartaric acid assisted binary organogel system: Strongly enhanced fluorescence induced by supramolecular assembly. Organic & Biomolecular Chemistry, 2005, 3(14): 2508–2512
https://doi.org/10.1039/b504945h
18 Y D Huang, Y Q Yuan, W Tu, Y Zhang, M J Zhang, H M Qu. Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230
https://doi.org/10.1016/j.tet.2015.04.010
19 Y Shishido, H Anetai, T Takedam, N Hoshino, S Noro, T Nakamura, T Akutagawa. Molecular assembly and ferroelectric response of benzenecarboxamides bearing multiple ‒CONHC14H29 chains. Journal of Physical Chemistry C, 2014, 118(36): 21204–21214
https://doi.org/10.1021/jp506035h
20 G L Feng, H H Chen, J H Cai, J W Wen, X B Liu. L-Phenylalanine based low-molecular-weight efficient organogelators and their selective gelation of oil from oil/water mixtures. Soft Materials, 2014, 12(4): 403–410
https://doi.org/10.1080/1539445X.2014.945042
21 M Yamanaka, R Aoyama. Construction of two- or three-component low molecular weight gel systems. Bulletin of the Chemical Society of Japan, 2010, 83(7): 1127–1131
https://doi.org/10.1246/bcsj.20100136
22 P C Xue, Y Zhang, J H Jia, D F Xu, X F Zhang, X L Liu, H P Zhou, P Zhang, R Lu, M Takafuji, H Ihara. Solvent-dependent photophysical and anion responsive properties of one glutamide gelator. Soft Matter, 2011, 7(18): 8296–8304
https://doi.org/10.1039/c1sm05431g
23 X H Cao, N Zhao, H T Lv, A P Gao, A P Shi, Y Q Wu. 4-Nitrobenzene thiourea self-assembly system and its transformation upon addition of Hg2+ ion: Applications as sensor to fluoride ion. Sensors and Actuators. B, Chemical, 2018, 266: 637–644
https://doi.org/10.1016/j.snb.2018.03.188
24 Y D Huang, S X Liu, Z F Xie, Z P Sun, W Chai, W Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Frontiers of Chemical Science and Engineering, 2018, 12(2): 252–261
https://doi.org/10.1007/s11705-017-1683-6
25 A P Gao, Y R Li, H T Lv, D Liu, N Zhao, Q Q Ding, X H Gao. Melamine tunable effect in a lenalidomide-based supramolecular self-assembly system via hydrogen bonding. New Journal of Chemistry, 2017, 41(16): 7924–7931
https://doi.org/10.1039/C7NJ01374D
26 B Kaczmarczyk. FTi.r. study of hydrogen bonds in aliphatic polyesteramides. Polymer, 1998, 39(23): 5853–5860
https://doi.org/10.1016/S0032-3861(98)00024-X
27 K Hermansson. Blue-shifting hydrogen bonds. Journal of Physical Chemistry A, 2002, 106(18): 4695–4702
https://doi.org/10.1021/jp0143948
28 S Ghosh, K Goswami, K Ghosh. Pyrrole-based tetra-amide for hydrogen pyrophosphate (HP2O73-) and F- ions in sol-gel medium. Supramolecular Chemistry, 2017, 29(12): 946–952
https://doi.org/10.1080/10610278.2017.1348603
29 Q Lin, X Zhu, Y P Fu, Y M Zhang, R Fang, L Z Yang, T B Wei. Rationally designed anion-responsive-organogels: Sensing F via reversible color changes in gel-gel states with specific selectivity. Soft Matter, 2014, 10(31): 5715–5723
https://doi.org/10.1039/C4SM00841C
30 H H Song, J H Yoo, J K Doe, K S Lee, Y K Choi, S R Keum. Liquid crystal structures of spirobenzopyram derivatives. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2000, 349(1): 267–270
31 M Marzec, J Popczyk, A Fąfara, S Wróbel, R Dąbrowski. Antiferroelectric liquid crystals studied by differential scanning calorimetry and electrooptic methods. Ferroelectrics, 2002, 281(1): 123–134
https://doi.org/10.1080/00150190215119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed