Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (5): 824-833   https://doi.org/10.1007/s11705-019-1867-3
  本期目录
Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method
Zhaoyou Zhu1,3, Guoxuan Li1, Yao Dai1, Peizhe Cui1, Dongmei Xu2, Yinglong Wang1,3()
1. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3. Shandong Collaborative Innovation Center of Eco-Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
 全文: PDF(1716 KB)   HTML
Abstract

The traditional approach to solvent selection in the extractive distillation process strictly focuses on the change in the relative volatility of light-heavy components induced by the solvent. However, the total annual cost of the process may not be minimal when the solvent induces the largest change in relative volatility. This work presents a heuristic method for selecting the optimal solvent to minimize the total annual cost. The functional relationship between the relative volatility and the total annual cost is established, where the main factors, such as the relative volatility of the light-heavy components and the relative volatility of the heavy-component solvent, are taken into account. Binary azeotropic mixtures of methanol-toluene and methanol-acetone are separated to verify the feasibility of the model. The results show that using the solvent with the minimal two-column extractive distillation index, the process achieves a minimal total annual cost. The method is conducive for sustainable advancements in chemistry and engineering because a suitable solvent can be selected without simulation verification.

Key wordsheuristic method    solvent selection    extractive distillation    total annual cost
收稿日期: 2019-03-15      出版日期: 2020-05-25
Corresponding Author(s): Yinglong Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 824-833.
Zhaoyou Zhu, Guoxuan Li, Yao Dai, Peizhe Cui, Dongmei Xu, Yinglong Wang. Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Front. Chem. Sci. Eng., 2020, 14(5): 824-833.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1867-3
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I5/824
Azeotrope Methanol-toluene
xmethanol /mol Temperature /K
Experimental data 0.8820–0.8860 336.41–336.95
Calculated by NRTL 0.8870 337.02
Calculated by UNIQUAC 0.8843 336.91
Tab.1  
Boiling point /°C amethanol/toluene atoluene/solvent
Toluene 110.6
Methanol 64.7
NMP 204 4.23 14.90
Aniline 183 4.43 9.06
DMF 166 4.77 4.75
Styrene 146 9.20 2.61
o-xylene 144 8.82 2.54
p-xylene 138 8.78 2.15
m-xylene 139 8.11 2.14
Tab.2  
Fig.1  
Fig.2  
Items Formulas and values
Column vessel Column diameter (D) = Aspen tray sizing
Column length (L) = NT trays with 2 ft spacing plus 20% extra length
Investment cost= 17640D1.066L0.802, where D and L are in m
Condensers Heat transfer coefficient= 0.852 kW·K–1·m–2
Differential temperature= log-mean temperature difference of inlet and outlet temperature differences
Investment cost= 7296A0.65, where A is in m2
Utility prices Low pressure steam (160°C) = $7.78/GJ
Medium pressure steam (184°C) = $8.22/GJ
High pressure steam (254°C) = $9.88/GJ
Cooling water= $0.354/GJ
TAC = (investment cost/payback period) + operating cost
Plant life time= 3 years
Tab.3  
Fig.3  
Items amethanol/toluene atoluene/solvent TAC V TEDI
NMP 4.23 14.90 824460.16 1.043351 0.56
Aniline 4.43 9.06 828002.21 1.008514 0.58
DMF 4.77 4.75 843445.78 1.212562 0.79
Styrene 9.20 2.61 939497.53 1.281028 1.62
o-xylene 8.82 2.54 984488.71 1.334695 1.74
p-xylene 8.78 2.15 1127997.47 1.493167 2.75
m-xylene 8.11 2.14 1359092.84 1.469316 2.81
Tab.4  
Fig.4  
Items Boiling point /°C aacetone/methanol amethanol/solvent
Acetone 56.53
Methanol 64.7
MEA 170.8 3.001 48.253
DMSO 189 2.275 71.686
Water 100 1.915 3.772
DMF 152.8 1.640 17.790
Ethanol 78 1.622 1.780
Tab.5  
Items Boiling point /°C aacetone/methanol amethanol/solvent TEDI TAC
MEA 170 3.001 48.253 1.06 726158
DMSO 189 2.275 71.68576 2.21 915460
Water 100 1.915 3.772 4.50 1248872
DMF 152 1.64 17.79 7.32 1851981
Ethanol 78 1.622 1.78 12.77 3675550
Tab.6  
Fig.5  
1 D S Sholl, R P Lively. Seven chemical separations to change the world. Nature, 2016, 532(7600): 316
https://doi.org/10.1038/532435a
2 Y L Wang, Z Zhang, D F Xu, W Liu, Z Y Zhu. Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. Journal of Process Control, 2016, 42: 59–76
https://doi.org/10.1016/j.jprocont.2016.04.006
3 Z Y Zhu, L L Wang, Y X Ma, W L Wang, Y L Wang. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Computers & Chemical Engineering, 2015, 76: 137–149
https://doi.org/10.1016/j.compchemeng.2015.02.016
4 J Pla-Franco, E Lladosa, S Loras, J B Montón. Thermodynamic analysis and process simulation of ethanol dehydration via heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2014, 53(14): 6084–6093
https://doi.org/10.1021/ie403988c
5 H Ahmadian Behrooz . Robust synthesis of the pressure-swing distillation process under azeotropic feed composition disturbance—study of the tetrahydrofuran/methanol system. Computers & Chemical Engineering, 2017, 104: 211–230
https://doi.org/10.1016/j.compchemeng.2017.04.022
6 H Yu, Q Ye, H Xu, H Zhang, X Dai. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384–3397
https://doi.org/10.1021/ie504325g
7 J Li, T Wang. Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 530–535
https://doi.org/10.1016/j.cep.2010.04.003
8 K Ma, M X Yu, Y Dai, Y X Ma, J Gao, P Z Cui, Y L Wang. Control of an energy-saving side-stream extractive distillation process with different disturbance conditions. Separation and Purification Technology, 2019, 210: 195–208
https://doi.org/10.1016/j.seppur.2018.08.004
9 W L Luyben. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chemical Engineering Research & Design, 2016, 106: 253–262
https://doi.org/10.1016/j.cherd.2015.11.021
10 V Plesu, S Cantero, A E Bonet-Ruiz, J Bonet, P Iancu, J Llorens. A heuristic for extractive agent flow rate in extractive distillation. Chemical Engineering Transactions, 2018, 70: 1849–1854
11 Z Tauanov, D Shah, V Inglezakis, P K Jamwal. Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion. Journal of Cleaner Production, 2018, 182: 616–623
https://doi.org/10.1016/j.jclepro.2018.02.047
12 D Golenko-Ginzburg, A Gonik, L Papic. Developing cost-optimization production control model via simulation. Mathematics and Computers in Simulation, 1999, 49(6): 335–351
https://doi.org/10.1016/S0378-4754(99)00090-7
13 W L Luyben. Improved design of an extractive distillation system with an intermediate-boiling solvent. Separation and Purification Technology, 2015, 156: 336–347
https://doi.org/10.1016/j.seppur.2015.10.020
14 A A Kiss, J David, P C Suszwalak. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separation and Purification Technology, 2012, 86: 70–78
https://doi.org/10.1016/j.seppur.2011.10.022
15 W L Luyben. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers & Chemical Engineering, 2013, 50: 1–7
https://doi.org/10.1016/j.compchemeng.2012.10.014
16 Z G Zhang, D H Huang, M Lv, P Jia, D Z Sun, W X Li. Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation. Separation and Purification Technology, 2014, 122: 73–77
https://doi.org/10.1016/j.seppur.2013.10.051
17 G Z Li, P Bai. New operation strategy for separation of ethanol–water by extractive distillation. Industrial & Engineering Chemistry Research, 2012, 51(6): 2723–2729
https://doi.org/10.1021/ie2026579
18 Y T Zhao, K Ma, W T Bai, D Q Du, Z Y Zhu, Y L Wang, J Gao. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148: 296–308
https://doi.org/10.1016/j.energy.2018.01.161
19 E Quijada-Maldonado, G W Meindersma, A B de Haan. Pilot plant study on the extractive distillation of toluene–methylcyclohexane mixtures using NMP and the ionic liquid [hmim][TCB] as solvents. Separation and Purification Technology, 2016, 166: 196–204
https://doi.org/10.1016/j.seppur.2016.04.041
20 E Ebrahimzadeh, J Matagi, F Fazlollahi, L L Baxter. Alternative extractive distillation system for CO2–ethane azeotrope separation in enhanced oil recovery processes. Applied Thermal Engineering, 2016, 96: 39–47
https://doi.org/10.1016/j.applthermaleng.2015.11.082
21 E Ebrahimzadeh, L L Baxter. Plant-wide control of coupled distillation columns with partial condensers. Applied Thermal Engineering, 2016, 102: 785–799
https://doi.org/10.1016/j.applthermaleng.2016.04.024
22 V Aniya, D De, A Singh, B Satyavathi. Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol: A techno-economic assessment. Energy, 2018, 144: 1013–1025
https://doi.org/10.1016/j.energy.2017.12.099
23 Y An, W S Li, Y Li, S Y Huang, J Ma, C L Shen, C J Xu. Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chemical Engineering Science, 2015, 135: 166–178
https://doi.org/10.1016/j.ces.2015.05.003
24 I Rodríguez-Donis, V Gerbaud, X Joulia. Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process. Industrial & Engineering Chemistry Research, 2001, 40(12): 2729–2741
https://doi.org/10.1021/ie000429z
25 O A Deorukhkar, T B Rahangdale, Y S Mahajan. Entrainer selection approach for distillation column. International Journal of Chemical Engineering Research, 2016, 8: 29–38
26 M F Malone, K Glinos, F E Marquez, J M Douglas. Simple, analytical criteria for the sequencing of distillation columns. AIChE Journal. American Institute of Chemical Engineers, 1985, 31(4): 683–689
https://doi.org/10.1002/aic.690310419
27 V Rod, J Marek. Separation sequences in multicomponent rectification. Collection of Czechoslovak Chemical Contributions, 1959, 24(10): 3240–3248
https://doi.org/10.1135/cccc19593240
28 X Zhang, X Li, G X Li, Z Y Zhu, Y L Wang, D M Xu. Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures. Separation and Purification Technology, 2018, 201: 79–95
https://doi.org/10.1016/j.seppur.2018.03.007
29 K E Porter, S O Momoh. Finding the optimum sequence of distillation columns-an equation to replace the “rules of thumb” (heuristics). Chemical Engineering Journal, 1991, 46(3): 97–108
https://doi.org/10.1016/0300-9467(91)87001-Q
30 Y Li, C J Xu. Pressure-swing distillation for separating pressure-insensitive minimum boiling azeotrope methanol/toluene via introducing a light entrainer: Design and control. Industrial & Engineering Chemistry Research, 2017, 56(14): 4017–4037
https://doi.org/10.1021/acs.iecr.6b04939
31 A J V Underwood. Fractional distillation of multi-component mixtures. Chemical Engineering Progress, 1948, 44: 603–614
32 M R Fenske, D Quiggle, C O Tongberg. Composition of straight-run pennsylvania gasoline. Industrial & Engineering Chemistry, 1932, 24(4): 408–418
https://doi.org/10.1021/ie50268a011
33 Y Wang, X Zhang, X B Liu, W T Bai, Z Y Zhu, Y L Wang, J Gao. Control of extractive distillation process for separating heterogenerous ternary azeotropic mixture via adjusting the solvent content. Separation and Purification Technology, 2018, 191: 8–26
https://doi.org/10.1016/j.seppur.2017.09.008
34 N Sadegh, E H Stenby, K Thomsen. Thermodynamic modeling of CO2 absorption in aqueous N-Methyldiethanolamine using Extended UNIQUAC model. Fuel, 2015, 144: 295–306
https://doi.org/10.1016/j.fuel.2014.12.002
35 J Gmehling, J Menke, J Krafczyk, K Fischer. Azeotropic Data. Wancouver: Wiley-VCH, 1994
36 R Muñoz, J B Monton, M C Burguet, J De la Torre. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Separation and Purification Technology, 2006, 50(2): 175–183
https://doi.org/10.1016/j.seppur.2005.11.022
37 S Arifin, I L Chien. Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Industrial & Engineering Chemistry Research, 2008, 47(3): 790–803
https://doi.org/10.1021/ie070996n
38 J M Douglas. Conceptual design of chemical processes. New York: McGraw-Hill, 1988
39 Extractive distillation optimization software. V1.0. Qingdao University of Science & Technology, 2015
40 L M Li, L J Guo, Y Q Tu, N Yu, L Y Sun, Y Y Tian, Q S Li. Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: Design and control. Computers & Chemical Engineering, 2017, 99: 117–134
https://doi.org/10.1016/j.compchemeng.2017.01.025
41 S S Liang, Y J Cao, X Z Liu, X Li, Y T Zhao, Y K Wang, Y L Wang. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research & Design, 2017, 117: 318–335
https://doi.org/10.1016/j.cherd.2016.10.040
42 Z Y Zhu, D F Xu, X Z Liu, Z Zhang, Y L Wang. Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology, 2016, 169: 66–77
https://doi.org/10.1016/j.seppur.2016.06.009
43 G Modla, P Lang. Separation of an acetone-methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration. Industrial & Engineering Chemistry Research, 2010, 49(8): 3785–3793
https://doi.org/10.1021/ie9019352
44 I D Gil, D C Botia, P Ortiz, O F Sanchez. Extractive distillation of acetone/methanol mixture using water as entrainer. Industrial & Engineering Chemistry Research, 2009, 48(10): 4858–4865
https://doi.org/10.1021/ie801637h
[1] FCE-19020-OF-ZZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed