Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (1): 28-40   https://doi.org/10.1007/s11705-019-1869-1
  本期目录
Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess
Daniel T. Payne1(), Mandeep K. Chahal1, Václav Březina2, Whitney A. Webre3, Katsuhiko Ariga1,4, Francis D’Souza3, Jan Labuta1(), Jonathan P. Hill1()
1. WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 305-0044, Japan
2. Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, 18000 Prague, Czech Republic
3. Department of Chemistry, University of North Texas, Denton, TX 76203, USA
4. Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
 全文: PDF(1908 KB)   HTML
Abstract

Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.

Key wordsporphyrin dimer    chirality    enantiomeric excess    CD    fluorescence
收稿日期: 2018-11-08      出版日期: 2020-01-20
Corresponding Author(s): Daniel T. Payne,Jan Labuta,Jonathan P. Hill   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(1): 28-40.
Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. Front. Chem. Sci. Eng., 2020, 14(1): 28-40.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1869-1
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I1/28
Fig.1  
Fig.2  
Fig.3  
Item Method KRR /(L?mol?1) for (R,R)-CHDA KSS/(L?mol?1) for (S,S)-CHDA Selectivitya) (KRR·KSS?1)
(R)-2, toluene UV-visb) 7.1±0.4 × 105 3.1±0.2 × 105 2.3
CDb) 7.2±0.7 × 105 2.7±0.3 × 105 2.6
Flb) 4.2±0.8 × 105 1.5±0.4 × 105 2.8
(R)-2, chloroformc) UV-visb) 7.47±0.37 × 104 2.65±0.13 × 104 2.8
CDb) 9.17±1.38 × 104 3.84±0.58 × 104 2.4
Flb) n.d.d) n.d.d) n.d.d)
NMRe) 8.44±2.53 × 104 3.25±0.97 × 104 2.6
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 M D C Nunez, M A Gallo, A Espinosa, J M Campos. Rapid development of chiral drugs in the pharmaceutical industry. In: New Developments in Medicinal Chemistry. United Arab Emirates: Bentham Science Publishers, 2010, 95–113
2 J M Lehn. Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 1995, 1–271
3 J Halpern, B Trost. Asymmetric catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5347
https://doi.org/10.1073/pnas.0401811101
4 Y Okamoto, T Ikai. Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 2008, 37(12): 2593–2608
https://doi.org/10.1039/b808881k
5 D Parker. NMR determination of enantiomeric purity. Chemical Reviews, 1991, 91(7): 1441–1457
https://doi.org/10.1021/cr00007a009
6 E G Shcherbakova, V Brega, V M Lynch, T D James, P Anzenbacher Jr. High-throughput assay for enantiomeric excess determination in 1,2- and 1,3-diols and direct asymmetric reaction screening. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(42): 10222–10229
https://doi.org/10.1002/chem.201701923
7 H H Jo, C Y Lin, E V Anslyn. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 2014, 47(7): 2212–2221
https://doi.org/10.1021/ar500147x
8 L Yang, T Wenzel, R T Williamson, M Christensen, W Schafer, C J Welch. Expedited selection of NMR chiral solvating agents for determination of enantiopurity. ACS Central Science, 2016, 2(5): 332–340
https://doi.org/10.1021/acscentsci.6b00062
9 W H Pirkle, D L Sikkenka. The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones: Consequences of three-point interactions. Journal of Organic Chemistry, 1977, 42(8): 1370–1374
https://doi.org/10.1021/jo00428a023
10 J Labuta, S Ishihara, T Šikorský, Z Futera, A Shundo, L Hanyková, J V Burda, K Ariga, J P Hill. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4(1): 2188
https://doi.org/10.1038/ncomms3188
11 J Labuta, J P Hill, S Ishihara, L Hanyková, K Ariga. Chiral sensing by nonchiral tetrapyrroles. Accounts of Chemical Research, 2015, 48(3): 521–529
https://doi.org/10.1021/acs.accounts.5b00005
12 K M Kadish, K M Smith, R Guilard, eds. The Porphyrin Handbook. San Diego: Academic Press, 2003, 1–20
13 G Sreenilayam, E J Moore, V Steck, R Fasan. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catalysis, 2017, 7(11): 7629–7633
https://doi.org/10.1021/acscatal.7b02583
14 V Nandipati, K Akinapelli, L Koya, S D Starnes. Recognition of mandelate stereoisomers by chiral porphyrin hosts: Prediction of stereopreference in guest binding a priori using a simple binding model. Tetrahedron Letters, 2014, 55(5): 985–991
https://doi.org/10.1016/j.tetlet.2013.12.046
15 Y Ema, S Nemugaki, S Tsuboi, M Utaka. Synthesis and CD spectrum of chiral porphyrin dimer. Tetrahedron Letters, 1995, 36(33): 5905–5908
https://doi.org/10.1016/00404-0399(50)11388-
16 T Hayashi, M Nonoguchi, T Aya, H Ogoshi. Molecular recognition of α,ω-diamines by metalloporphyrin dimer. Tetrahedron Letters, 1997, 38(9): 1603–1606
https://doi.org/10.1016/S0040-4039(97)00123-8
17 T Kurtán, N Nesnas, Y Q Li, X Huang, K Nakanishi, N Berova. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. Journal of the American Chemical Society, 2001, 123(25): 5962–5973
https://doi.org/10.1021/ja010249w
18 V V Borovkov, I Fujii, A Muranaka, G A Hembury, T Tanaka, A Ceulemans, N Kobayashi, Y Inoue. Rationalization of supramolecular chirality in a bisporphyrin system. Angewandte Chemie International Edition, 2004, 43(41): 5481–5485
https://doi.org/10.1002/anie.200460965
19 B Saha, S A Ikbal, A G Petrovic, N Berova, S P Rath. Complexation of chiral zinc-porphyrin tweezer with achiral diamines: Induction and two-step inversion of interporphyrin helicity monitored by ECD. Inorganic Chemistry, 2017, 56(7): 3849–3860
https://doi.org/10.1021/acs.inorgchem.6b02686
20 G Liu, T Yasumitsu, L Zhao, X Peng, F Wang, A K Bauri, S Aonuma, T Kimura, N Komatsu. Preferential extraction of left- and right-handed single-walled carbon nanotubes by use of chiral diporphyrin nanotweezers. Organic & Biomolecular Chemistry, 2012, 10(30): 5830–5836
https://doi.org/10.1039/c2ob25233c
21 J Labuta, S Ishihara, A Shundo, S Arai, S Takeoka, K Ariga, J P Hill. Chirality sensing by non-chiral porphines. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(13): 3558–3561
https://doi.org/10.1002/chem.201100052
22 S Ishihara, J Labuta, Z Futera, S Mori, H Sato, K Ariga, J P Hill. NMR spectroscopic determination of enantiomeric excess using small prochiral molecules: Intermolecular transfer of magnetic anisotropy in isotropic media. Journal of Physical Chemistry B, 2018, 122(19): 5114–5120
https://doi.org/10.1021/acs.jpcb.8b03684
23 T Shinoda, M Onaka, Y Izumi. The reason why K10 is an effective promoter for meso-tetraalkylporphyrin synthesis. Chemistry Letters, 1995, 24(7): 493–494
https://doi.org/10.1246/cl.1995.493
24 R Plamont, Y Kikkawa, M Takahashi, M Kanesato, M Giorgi, A C K Shun, C Roussel, T S Balaban. Nanoscopic imaging of meso-tetraalkylporphyrins prepared in high yields enabled by Montmorillonite K10 and 3 Å molecular sieves. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(34): 11293–11300
https://doi.org/10.1002/chem.201300532
25 M Rostami, L Rafiee, F Hassanzadeh, A R Dadrass, G A Khodarahmi. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. Research in Pharmaceutical Sciences, 2015, 10(6): 504–513
26 K A Connors. Binding Constants: The Measurement of Molecular Complex Stability. New York: Wiley-Interscience, 1987, 1–432
27 K Hirose. A practical guide for the determination of binding constants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39(3-4): 193–209
https://doi.org/10.1023/A:1011117412693
28 E R Henry, J. Hofrichter Methods in Enzymology. London: Academic Press, 1992, 210: 29–192
29 E R Malinowski. Factor Analysis in Chemistry. New York: Wiley-Interscience, 2002, 1–432
30 V Březina, S Ishihara, J Lang, L Hanyková, K Ariga, J P Hill, J Labuta. Structural modulation of chromic response: Effects of binding-site blocking in a conjugated calix[4]pyrrole chromophore. ChemistryOpen, 2018, 7(5): 323–335
https://doi.org/10.1002/open.201800005
31 J Hanuš, K Chmelová, J Štěpánek, P Y Turpin, J Bok, I Rosenberg, Z Točík. Raman spectroscopic study of triplex-like complexes of polyuridylic acid with the isopolar, non–isosteric phosphonate analogues of diadenosine monophosphate. Journal of Raman Spectroscopy, 1999, 30(8): 667–676
https://doi.org/10.1002/(SICI)1097-4555(199908)30:8<667::AID-JRS432>3.0.CO;2-5
32 L Zimányi. Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: A critical evaluation using realistic simulated data. Journal of Physical Chemistry B, 2004, 108(13): 4199–4209
https://doi.org/10.1021/jp0364809
33 L Zimányi, Á Kulcsár, J K Lanyi, D F Sears, J Saltiel. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: Analysis of simulated data. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4408–4413
https://doi.org/10.1073/pnas.96.8.4408
34 S Brahma, S A Ikbal, A Dhamija, S P Rath. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system. Inorganic Chemistry, 2014, 53(5): 2381–2395
https://doi.org/10.1021/ic401395d
35 S Brahma, S A Ikbal, S P Rath. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: Induction and rationalization of supramolecular chirality. Inorganic Chemistry, 2014, 53(1): 49–62
https://doi.org/10.1021/ic401091r
36 P Zhang, C Wolf. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes. Chemical Communications, 2013, 49(62): 7010–7012
https://doi.org/10.1039/c3cc43653e
37 S H Jung, K Y Kim, A Ahn, S S Lee, M Y Choi, J Jaworski, J W Jung. NMR detection of chirality and enantiopurity of amines by using benzene tricarboxamide-based hydrogelators as chiral solvating agents. New Journal of Chemistry, 2016, 40(9): 7917–7922
https://doi.org/10.1039/C6NJ01543C
38 C Wang, X Wu, L Pu. A highly fluorescent chiral aldehyde for enantioselective fluorescent recognition in a biphasic system. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10749–10752
https://doi.org/10.1002/chem.201702354
39 P Zardi, K Wurst, G Licini, C Zonta. Concentration-independent stereodynamic g-Probe for chiroptical enantiomeric excess determination. Journal of the American Chemical Society, 2017, 139(44): 15616–15619
https://doi.org/10.1021/jacs.7b09469
40 T Ema, N Ouchi, T Doi, T Korenaga, T Sakai. Highly sensitive chiral shift reagent bearing two zinc porphyrins. Organic Letters, 2005, 7(18): 3985–3988
https://doi.org/10.1021/ol0514808
41 T Ema, S Misawa, S Nemugaki, T Sakai, M Utaka. New optically active diporphyrin having a chiral cyclophane as a spacer. Chemistry Letters, 1997, 26(6): 487–488
https://doi.org/10.1246/cl.1997.487
42 V V Borovkov, J M Lintuluoto, G A Hembury, M Sugiura, R Arakawa, Y Inoue. Supramolecular chirogenesis in zinc porphyrins: Interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Journal of Organic Chemistry, 2003, 68(19): 7176–7192
https://doi.org/10.1021/jo034814k
43 Q Chen, R E Hirsch. A direct and simultaneous detection of zinc protoporphyrin IX, free protoporphyrin IX, and fluorescent heme degradation product in red blood cell hemosylates. Free Radical Research, 2006, 40(3): 285–294
https://doi.org/10.1080/10715760500522630
44 J S Fossey, E V Anslyn, W D G Brittain, S D Bull, B M Chapin, C L Le Duff, T D James, G Lees, S Lim, J A C Lloyd, et al. Rapid determination of enantiomeric excess via NMR spectroscopy: A research-informed experiment. Journal of Chemical Education, 2017, 94(1): 79–84
https://doi.org/10.1021/acs.jchemed.6b00355
45 N Berova, G Pescitelli, A G Petrovic, G Proni. Probing molecular chirality by CD-sensitive dimeric metalloporphyrin hosts. Chemical Communications, 2009, 40(40): 5958–5980
https://doi.org/10.1039/b909582a
46 M Tanasova, M Anyika, B Borhan. Sensing remote chirality: Stereochemical determination of β, γ, and δ-chiral carboxylic acids. Angewandte Chemie International Edition, 2015, 54(14): 4274–4278
https://doi.org/10.1002/anie.201410371
47 W Lu, H Yang, X Li, C Wang, X Zhan, D Qi, Y Bian, J Jiang. Chiral discrimination of diamines by a binaphthylene-bridged porphyrin dimer. Inorganic Chemistry, 2017, 56(14): 8223–8231
https://doi.org/10.1021/acs.inorgchem.7b00920
48 D T Payne, J S Fossey, R B P Elmes. Catalysis and sensing for our environment (CASE2015) and the supramolecular chemistry Ireland meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th–11th July. Supramolecular Chemistry, 2016, 28(11-12): 921–931
https://doi.org/10.1080/10610278.2016.1150595
[1] FCE-18125-OF-PD_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed