Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 436-452   https://doi.org/10.1007/s11705-019-1870-8
  本期目录
Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC
Simon Roussanaly1(), Monika Vitvarova2, Rahul Anantharaman1, David Berstad1, Brede Hagen1, Jana Jakobsen1, Vaclav Novotny2, Geir Skaugen1
1. SINTEF Energy Research, NO-7465 Trondheim, Norway
2. Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07 Prague 6, Czech Republic
 全文: PDF(1684 KB)   HTML
Abstract

This paper compares the techno-economic performances of three technologies for CO2 capture from a lignite-based IGCC power plant located in the Czech Republic: (1) Physical absorption with a Rectisol-based process; (2) Polymeric CO2-selective membrane-based capture; (3) Low-temperature capture. The evaluations show that the IGCC plant with CO2 capture leads to costs of electricity between 91 and 120 €·MWh−1, depending on the capture technology employed, compared to 65 €·MWh−1 for the power plant without capture. This results in CO2 avoidance costs ranging from 42 to 84 €·tCO2,avoided−1 , mainly linked to the losses in net power output. From both energy and cost points of view, the low-temperature and Rectisol based CO2 capture processes are the most efficient capture technologies. Furthermore, partial CO2 capture appears as a good mean to ensure early implementation due to the limited increase in CO2 avoidance cost when considering partial capture. To go beyond the two specific CO2-selective membranes considered, a cost/membrane property map for CO2-selective membranes was developed. This map emphasise the need to develop high performance membrane to compete with solvent technology. Finally, the cost of the whole CCS chain was estimated at 54 €·tCO2,avoided−1 once pipeline transport and storage are taken into consideration.

Key wordscarbon capture and storage (CCS)    techno-economic comparison    pre-combustion capture    physical solvent    low-temperature capture
收稿日期: 2019-02-02      出版日期: 2020-04-28
Corresponding Author(s): Simon Roussanaly   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 436-452.
Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1870-8
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/436
Fig.1  
Fig.2  
Fig.3  
Lignite characteristic As received Dried
LHV /(MJ?kg?1) 16.50 21.99
HHV /(MJ?kg?1) 18.07 23.31
Moisture /wt-% 31.00 11.00
Ash /wt-% 8.97 11.57
Carbon /wt-% 42.26 54.51
Hydrogen /wt-% 3.66 4.72
Nitrogen /wt-% 0.60 0.77
Oxygen /wt-% 12.54 16.18
Sulphur /wt-% 0.97 1.25
Tab.1  
Item Concentration /vol-% Value
Component
CO 1.08
CO2 38.64
H2 53.41
N2 5.89
Ar 0.80
Other 0.18
Parameters
Mass flow /(kg?s–1) 68
Pressure /bar 28.4
Temperature /°C 30
Tab.2  
Component Concentration /vol%
H2 >80
CO <2.5
CO2 <8
H2S /ppm <30
Tab.3  
Item Concentration /vol-% Value
Component >95
CO2 <3*
H2 <3*
N2 <3*
Ar <3*
O2 <2000
CO /ppm 100
H2S /ppm 300
Parameters
Pressure /bar 110
Temperature /°C 40
Tab.4  
Fig.4  
Membrane Selectivity CO2 permeance /(m3(STP)?m?2?h?1?bar?1)
Membrane A [39] 10 2.7
Membrane B [29] 63 7
Tab.5  
Fig.5  
Fig.6  
Technology Process contingency /%DC without contingencies [46] TRL-level [4] Owner’s costs and project contingencies /%EPC cost [47]
IGCC plant (except gasifier) Included in EBTF estimates ? 19
IGCC plant gasifier Including in EBTF estimates+ 10% ? 24
Rectisol CO2 capture and CO2 conditioning 10 8 24
Membrane CO2 capture 20 7 30
Low-temperature CO2 capture 30 6 36
Tab.6  
Utilities and consumables Cost
Lignite /(€?GJ–1) [53] 2
Process water /(€?m–3) 3.15
Cooling water /(€?m–3) 0.15
Ash disposal /(€?t–1) Not included
Sulphur credit /(€?t–1) 0
Tab.7  
Fig.7  
Parameters No CO2 capture Rectisol capture Low-temperature capture Capture process based on membrane A Capture process based on membrane B
Lignite thermal power input /MWth 638.5 638.5 638.5 638.5 638.5
Gas turbine net power /MWe 181.8 168.8 167.2 156.9 163.4
Steam turbine gross power /MWe 134.8 101.9 102.7 95.0 96.6
Gross power output /MWe 316.7 270.7 269.9 255.1 260.0
Fuel treatment /MWe 1.8 1.8 1.8 1.8 1.8
ASU unit /MWe 16.6 16.6 16.6 16.6 16.6
O2/N2 compressors /MWe 12.8 12.8 12.8 12.8 12.8
Gasifier unit including quench (fans+compressors) /MWe 3.7 3.7 3.7 3.7 3.7
AGR unit /MWe 2.6 2.6 2.6 2.6 2.6
CO2 capture unit /MWe ? 1.2 13.9 30.7 8
CO2 conditioning unit /MWe ? 13.9 ? 14.8 14.8
Steam cycle auxiliaries /MWe 3.5 3.3 3.3 3.3 3.3
Net power output /MWe 275.7 214.8 215.2 168.7 196.3
CO2 capture ratio /% ? 89.0 84.1 86.9 86.9
CCR /% ? 86.6 81.8 84.6 84.6
Specific CO2 capture and conditioning work /(MJe?kgqC O2,?eq captured–1) ? 0.30 0.29 0.92 0.46
Specific CO2 emissions /(gCO 2?kWh–1) 764 103 139 117 118
Tab.8  
Fig.8  
Fig.9  
Fig.10  
KPIs CO2 capture ratio /% 50 60 75 85
LCOE /(€?MWh–1) Rectisol ? 91 96 97
Low-temperature 83 ? ? 91
Capture process based on membrane A 95 98 108 120
Capture process based on membrane B 88 87 92 99
CAC /(€?tC O2,?avoided–1) Rectisol ? 56 51 47
Low-temperature 48 ? ? 42
Capture process based on membrane A 78 71 75 84
Capture process based on membrane B 59 49 47 53
Tab.9  
Fig.11  
Fig.12  
1 International Energy Agency. IEA Statistics: Coal Information, 2015
2 L Bauerova. Europe’s Coal Curtain Is Complicating the Climate Fight. Bloomberg Business, 2015-01-12
3 D Berstad, S Roussanaly, G Skaugen, R Anantharaman, P Nekså, K Jordal. Energy and cost evaluation of a low-temperature CO2 capture unit for IGCC plants. Energy Procedia, 2014, 63: 2031–2036
https://doi.org/10.1016/j.egypro.2014.11.218
4 IEAGHG. Assessment of Emerging CO2 Capture Technologies and Their Potential to Reduce Costs, 2014/TR4, 2014
5 S Størset, G Tangen, D Berstad, P Eliasson, K A Hoff, Ø Langørgen, S T Munkejord, S Roussanaly, M Torsæter. Profiting from CCS innovations: A study to measure potential value creation from CCS research and development. International Journal of Greenhouse Gas Control, 2019, 83: 208–215
https://doi.org/10.1016/j.ijggc.2019.02.015
6 C Chen, E Rubin. CO2 control technology effects on IGCC plant performance and cost. Energy Policy, 2009, 37(3): 915–924
https://doi.org/10.1016/j.enpol.2008.09.093
7 J Klara, J Plunkett. The potential of advanced technologies to reduce carbon capture costs in future IGCC power plants. International Journal of Greenhouse Gas Control, 2010, 4(2): 112–118
https://doi.org/10.1016/j.ijggc.2009.10.006
8 H Lin, Z He, Z Sun, J Kniep, A Ng, R Baker, T Merkel. CO2-selective membranes for hydrogen production and CO2 capture—Part II: Techno-economic analysis. Journal of Membrane Science, 2015, 493: 794–806
https://doi.org/10.1016/j.memsci.2015.02.042
9 J Urech, L Tock, T Harkin, A Hoadley, F Maréchal. An assessment of different solvent-based capture technologies within an IGCC–CCS power plant. Energy, 2014, 64: 268–276
https://doi.org/10.1016/j.energy.2013.10.081
10 R Anantharaman, O Bolland, N Booth, E V Dorst, C Ekstrom, F Franco, E Macchi, G Manzolini, D Nikolic, A Pfeffer, et al. D1.4.3 European best practice guidelines for assessment of CO2 capture technologies (DECARBit Project), 2011
11 H Zhai, E Rubin. Systems analysis of physical absorption of CO2 in ionic liquids for pre-combustion carbon capture. Environmental Science & Technology, 2018, 52(8): 4996–5004
https://doi.org/10.1021/acs.est.8b00411
12 M Gazzani, D Turi, A Ghoniem, E Macchi, G Manzolini. Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO2 capture. International Journal of Greenhouse Gas Control, 2014, 25: 62–78
https://doi.org/10.1016/j.ijggc.2014.03.011
13 D Grainger, M B Hägg. Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture. Fuel, 2008, 87(1): 14–24
https://doi.org/10.1016/j.fuel.2007.03.042
14 L Riboldi, O Bolland. Comprehensive analysis on the performance of an IGCC plant with a PSA process integrated for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 43: 57–69
https://doi.org/10.1016/j.ijggc.2015.10.006
15 M Gräbner, O Morstein, D Rappold, W Günster, G Beysel, B Meyer. Constructability study on a German reference IGCC power plant with and without CO2-capture for hard coal and lignite. Energy Conversion and Management, 2010, 51(11): 2179–2187
https://doi.org/10.1016/j.enconman.2010.03.011
16 E Rubin, G Booras, J Davison, C Ekstrom, M Matuszewski, S T McCoy, C Short. Toward a common method of the cost estimation for CO2 capture and storage at fossil fuel power plants. Global CCS Institute, 2013
17 O Falk-Pedersen, M H Gundersen, A Selfors, P T Svendsen. Carbon capture and storage at Kårstø. Oslo: Norges Vassdrags-og Energidirektorat, 2007 (in Norwegian)
18 S Garðarsdóttir, F Normann, R Skagestad, F Johnsson. Investment costs and CO2 reduction potential of carbon capture from industrial plants—A Swedish case study. International Journal of Greenhouse Gas Control, 2018, 76: 111–124
https://doi.org/10.1016/j.ijggc.2018.06.022
19 S Roussanaly, A Aasen, R Anantharaman, B Danielsen, J Jakobsen, L Heme-De-Lacotte, G Neji, A Sødal, P E Wahl, T K Vrana, R Dreux. Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis. Applied Energy, 2019, 233-234: 478–494
https://doi.org/10.1016/j.apenergy.2018.10.020
20 European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP). The Costs of CO2 Transport, Post-Demonstration CCS in the EU, 2011
21 S Roussanaly, J P Jakobsen, E H Hognes, A L Brunsvold. Benchmarking of CO2 transport technologies: Part I—Onshore pipeline and shipping between two onshore areas. International Journal of Greenhouse Gas Control, 2013, 19: 584
https://doi.org/10.1016/j.ijggc.2013.05.031
22 C Kunze, H Spliethoff. Modelling, comparison and operation experiences of entrained flow gasifier. Energy Conversion and Management, 2011, 52(5): 2135–2141
https://doi.org/10.1016/j.enconman.2010.10.049
23 J C Meerman, M M J Knoope, A Ramírez, W C Turkenburg, A P C Faaij. Technical and economic prospects of coal- and biomass-fired integrated gasification facilities equipped with CCS over time. International Journal of Greenhouse Gas Control, 2013, 16: 311–323
https://doi.org/10.1016/j.ijggc.2013.01.051
24 Z Kapetaki, H Ahn, S Brandani. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers. Energy Procedia, 2013, 37: 2196–2203
https://doi.org/10.1016/j.egypro.2013.06.099
25 A Padurean, C C Cormos, P S Agachi. Pre-combustion carbon dioxide capture by gas–liquid absorption for integrated gasification combined cycle power plants. International Journal of Greenhouse Gas Control, 2012, 7: 1–11
https://doi.org/10.1016/j.ijggc.2011.12.007
26 S Park, S Lee, J Lee, S Chun, J Lee. The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters. Energy, 2015, 81: 47–55
https://doi.org/10.1016/j.energy.2014.10.055
27 L Sun, R Smith. Rectisol wash process simulation and analysis. Journal of Cleaner Production, 2013, 39: 321–328
https://doi.org/10.1016/j.jclepro.2012.05.049
28 P Li, Z Wang, Z Qiao, Y Liu, X Cao, W Li, J Wang, S Wang. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168
https://doi.org/10.1016/j.memsci.2015.08.010
29 Z Qiao, Z Wang, S Yuan, J Wang, S Wang. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. Journal of Membrane Science, 2015, 475: 290–302
https://doi.org/10.1016/j.memsci.2014.10.034
30 S Roussanaly, R Anantharaman, K Lindqvist, H Zhai, E Rubin. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of Membrane Science, 2016, 511: 250–264
https://doi.org/10.1016/j.memsci.2016.03.035
31 S Roussanaly, R Anantharaman. Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources. Chemical Engineering Journal, 2017, 327: 618–628
https://doi.org/10.1016/j.cej.2017.06.082
32 S Roussanaly, R Anantharaman, K Lindqvist, B Hagen. A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture. Sustainable Energy & Fuels, 2018, 2(6): 1225–1243
https://doi.org/10.1039/C8SE00039E
33 C Saltonstall. Calculation of the membrane area required for gas separations. Journal of Membrane Science, 1987, 32(2-3): 185–193
https://doi.org/10.1016/S0376-7388(00)85005-X
34 H Zhai, E Rubin. Techno-economic assessment of polymer membrane systems for post-combustion carbon capture at coal-fired power plants. Environmental Science & Technology, 2013, 47(6): 3006–3014
https://doi.org/10.1021/es3050604
35 T Merkel, H Lin, X Wei, R Baker. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139
https://doi.org/10.1016/j.memsci.2009.10.041
36 X He, C Fu, M B Hägg. Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chemical Engineering Journal, 2015, 268: 1–9
https://doi.org/10.1016/j.cej.2014.12.105
37 V Vakharia, K Ramasubramanian, H Winston. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66
https://doi.org/10.1016/j.memsci.2015.04.007
38 H Lin, B Freeman. Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure, 2005, 739(1-3): 57–74
https://doi.org/10.1016/j.molstruc.2004.07.045
39 H Lin, Z He, Z Sun, J Vu, A Ng, M Mohammed, J Kniep, T Merkel, T Wu, R Lambrecht. CO2-selective membranes for hydrogen production and CO2 capture. Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161
https://doi.org/10.1016/j.memsci.2014.01.020
40 D Berstad, R Anantharaman, P Nekså. Low-temperature CO2 capture technologies: Applications and potential. International Journal of Refrigeration, 2013, 36(5): 1403–1416
https://doi.org/10.1016/j.ijrefrig.2013.03.017
41 R Anantharaman, D Berstad, S Roussanaly. Techno-economic performance of a hybrid membrane-liquefaction process for post-combustion CO2 capture. Energy Procedia, 2014, 61: 1244–1247
https://doi.org/10.1016/j.egypro.2014.11.1068
42 M Voldsund, S Gardarsdottir, E De Lena, J F Pérez-Calvo, A Jamali, D Berstad, C Fu, M Romano, S Roussanaly, R Anantharaman, et al.. Comparison of technologies for CO2 capture from cement production. Part 1: Technical evaluation. Energies, 2019, 12(3): 559
https://doi.org/10.3390/en12030559
43 S Gardarsdottir, E De Lena, M Romano, S Roussanaly, M Voldsund, J F Pérez-Calvo, D Berstad, C Fu, R Anantharaman, D Sutter, et al.. Comparison of technologies for CO2 capture from cement production. Part 2: Cost analysis. Energies, 2019, 12(3): 542
https://doi.org/10.3390/en12030542
44 European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP). The Costs of CO2 Capture, Transport and Storage, Post-Demonstration CCS in the EU, 2011
45 M Ho, G Allinson, D Wiley. Comparison of MEA capture cost for low CO2 emissions sources in Australia. International Journal of Greenhouse Gas Control, 2011, 5(1): 49–60
https://doi.org/10.1016/j.ijggc.2010.06.004
46 NETL. Quality Guidelines for Energy System Studies: Cost Estimation Methodology for Netl Assessments of Power Plant Performance. DOE/NETL-2011/1455, 2011
47 NETL. Quality Guidelines for Energy System Studies: Technology Learning Curve (FOAK to NOAK). DOE/NETL-341/042211, 2012
48 HIS. The IHS CERA European Power Capital Costs Index (EPCCI), 2013
49 Trading Economics. Trading Economics Database on Euro Area Inflation Rate, 2011
50 Richardson Engineering. Cost Factor Location Manual, 2007
51 IEAGHG. CO2 Capture in Natural Gas Production by Adsorption Processes for CO2 Storage, EOR and EGR, 2016
52 C A Grande, S Roussanaly, R Anantharaman, K Lindqvist, P Singh, J Kemper. CO2 capture in natural gas production by adsorption processes. Energy Procedia, 2017, 114: 2259–2264
https://doi.org/10.1016/j.egypro.2017.03.1363
53 Booz & Company. Understanding Lignite Generation Costs in Europe, 2014
54 H Zhai. Advanced membranes and learning scale required for cost-effective post-combustion carbon capture. iScience, 2019, 13: 440–451
55 R Anantharaman, S Roussanaly, S F Westman, J Husebye. Selection of optimal CO2 capture plant capacity for better investment decisions. Energy Procedia, 2013, 37: 7039–7045
https://doi.org/10.1016/j.egypro.2013.06.640
56 N Al-Mufachi, N Rees, R Steinberger-Wilkens. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable & Sustainable Energy Reviews, 2015, 47: 540–551
https://doi.org/10.1016/j.rser.2015.03.026
57 G Di Marcoberardino, M Binotti, G Manzolini, J Viviente, A Arratibel, L Roses, F Gallucci. Achievements of European projects on membrane reactor for hydrogen production. Journal of Cleaner Production, 2017, 161: 1442–1450
https://doi.org/10.1016/j.jclepro.2017.05.122
58 S Roussanaly, G Skaugen, A Aasen, J Jakobsen, L Vesely. Techno-economic evaluation of CO2 transport from a lignite-fired IGCC plant in the Czech Republic. International Journal of Greenhouse Gas Control, 2017, 65(Suppl C): 235–250
https://doi.org/10.1016/j.ijggc.2017.08.022
59 D Henriksen, I Ombudstvedt. Cross-border transportation—A key to unlock full-scale CCS. Energy Procedia, 2017, 114: 7443–7458
https://doi.org/10.1016/j.egypro.2017.03.1874
60 European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP). The Costs of CO2 Storage, Post-Demonstration CCS in the EU, 2011
61 J Jakobsen, S Roussanaly, R Anantharaman. A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, 2017, 144: 523–539
https://doi.org/10.1016/j.jclepro.2016.12.120
[1] FCE-19022-OF-RS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed