Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes
Yujie Ban1, Meng Zhao1,2, Weishen Yang1()
1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 2. University of Chinese Academy of Sciences, Beijing 100049, China
A low-carbon economy calls for CO2 capture technologies. Membrane separations represent an energy-efficient and environment-friendly process compared with distillations and solvent absorptions. Metal-organic frameworks (MOFs), as a novel type of porous materials, are being generated at a rapid and growing pace, which provide more opportunities for high-efficiency CO2 capture. In this review, we illustrate a conceptional framework from material design and membrane separation application for CO2 capture, and emphasize two importance themes, namely (i) design and modification of CO2-philic MOF materials that targets secondary building units, pore structure, topology and hybridization and (ii) construction of crack-free membranes through chemical epitaxy growth of active building blocks, interfacial assembly, ultrathin two-dimensional nanosheet assembly and mixed-matrix integration strategies, which would give rise to the most promising membrane performances for CO2 capture, and be expected to overcome the bottleneck of permeability-selectivity limitations.
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188-215.
Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
E A G Schuur, A D McGuire, C Schädel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M Lawrence, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520(7546): 171–179 https://doi.org/10.1038/nature14338
2
M Aghaie, N Rezaei, S Zendehboudi. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable & Sustainable Energy Reviews, 2018, 96: 502–525 https://doi.org/10.1016/j.rser.2018.07.004
3
C A Trickett, A Helal, B A Al Maythalony, Z H Yamani, K E Cordova, O M Yaghi. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2(8): 17045 https://doi.org/10.1038/natrevmats.2017.45
4
K Yu, W A Mitch, N Dai. Nitrosamines and nitramines in amine-based carbon dioxide capture systems: Fundamentals, engineering implications, and knowledge gaps. Environmental Science & Technology, 2017, 51(20): 11522–11536 https://doi.org/10.1021/acs.est.7b02597
5
X Huang, J Zhang, X Chen. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 2003, 48(15): 1531–1534
6
A Phan, C J Doonan, F J Uribe-Romo, C B Knobler, M O’Keeffe, O M Yaghi. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67 https://doi.org/10.1021/ar900116g
7
S S Y Chui, S M F Lo, J P H Charmant, A G Orpen, I D Williams. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science, 1999, 283(5405): 1148–1150 https://doi.org/10.1126/science.283.5405.1148
8
E Mohamed, K Jaheon, R Nathaniel, V David, W Joseph, O K Michael, O M Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469–472 https://doi.org/10.1126/science.1067208
9
F Millange, C Serre, G Férey. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x. Chemical Communications, 2002, 8(8): 822–823 https://doi.org/10.1039/b201381a
10
J H Cavka, S Jakobsen, U Olsbye , N Guillou , C Lamberti , S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851 https://doi.org/10.1021/ja8057953
11
H Reinsch, M A van der Veen, B Gil, B Marszalek, B Verbiest, D de Vos, N Stock. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials, 2013, 25(1): 17–26 https://doi.org/10.1021/cm3025445
12
D S Sholl, R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437 https://doi.org/10.1038/532435a
13
A M Fracaroli, H Furukawa, M Suzuki, M Dodd, S Okajima, F Gándara, J A Reimer, O M Yaghi. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 2014, 136(25): 8863–8866 https://doi.org/10.1021/ja503296c
14
Y Ban, Z Li, Y Li, Y Peng, H Jin, W Jiao, A Guo, P Wang, Q Yang, C Zhong, W Yang. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 2015, 54(51): 15483–15487 https://doi.org/10.1002/anie.201505508
15
D Alezi, A M P Peedikakkal, L J Weselinski, V Guillerm, Y Belmabkhout, A J Cairns, Z Chen, L Wojtas, M Eddaoudi. Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs. Journal of the American Chemical Society, 2015, 137(16): 5421–5430 https://doi.org/10.1021/jacs.5b00450
16
M Zeeshan, V Nozari, M B Yagci, T Isik, U Unal, V Ortalan, S Keskin, A Uzun. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity. Journal of the American Chemical Society, 2018, 140(32): 10113–10116 https://doi.org/10.1021/jacs.8b05802
17
Y Liu, J H Pan, N Wang, F Steinbach, X Liu, J Caro. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032 https://doi.org/10.1002/anie.201411550
18
H T Kwon, H K Jeong. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. Journal of the American Chemical Society, 2013, 135(29): 10763–10768 https://doi.org/10.1021/ja403849c
19
Y Peng, Y Li, Y Ban, W Yang. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761 https://doi.org/10.1002/anie.201703959
20
A Guo, Y Ban, K Yang, W Yang. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science, 2018, 562: 76–84 https://doi.org/10.1016/j.memsci.2018.05.032
21
Y Li, X Zhang, J Lan, P Xu, J Sun. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorganic Chemistry, 2019, 58(20): 13917–13926 https://doi.org/10.1021/acs.inorgchem.9b01762
22
Y Abdoli, M Razavian , S Fatemi. Bimetallic Ni–Co-based metal–organic framework: An open metal site adsorbent for enhancing CO2 capture. Applied Organometallic Chemistry, 2019, 33(8): e5004 doi:10.1002aoc.5004
23
W L Queen, C M Brown, D K Britt, P Zajdel, M R Hudson, O M Yaghi. Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. Journal of Physical Chemistry C, 2011, 115(50): 24915–24919 https://doi.org/10.1021/jp208529p
24
I Strauss, A Mundstock, D Hinrichs, R Himstedt, A Knebel, C Reinhardt, D Dorfs, J Caro. The interaction of guest molecules with Co-MOF-74: A vis/NIR and raman approach. Angewandte Chemie International Edition, 2018, 57(25): 7434–7439 https://doi.org/10.1002/anie.201801966
25
W Wong-Ng, I Levin, J A Kaduk, L Espinal, H Wu. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2: An in situ laboratory X-ray powder diffraction study. Journal of Alloys and Compounds, 2016, 656: 200–205 https://doi.org/10.1016/j.jallcom.2015.09.078
26
Q M Wang, D Shen, M Bülow, M L Lau, S Deng, F R Fitch, N O Lemcoff, J Semanscin. Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 2002, 55(2): 217–230 https://doi.org/10.1016/S1387-1811(02)00405-5
27
S R Caskey, A G Wong-Foy, A J Matzger. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871 https://doi.org/10.1021/ja8036096
28
J Park, H Kim, S S Han, Y Jung. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Journal of Physical Chemistry Letters, 2012, 3(7): 826–829 https://doi.org/10.1021/jz300047n
29
Q G Zhai, X Bu, C Mao, X Zhao, P Feng. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524–2527 https://doi.org/10.1021/jacs.5b13491
30
P Q Liao, W X Zang, J P Zhang , X M Chen. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6 : 8697 https://doi.org/10.1038/ncomms9697
31
D D Zhou, P Chen, C Wang, S S Wang, Y Du, H Yan, Z M Ye, C T He, R K Huang, Z W Mo, N Y Huang, J P Zhang. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18: 994-998 https://doi.org/10.1038/s41563-019-0427-z
32
J P Zhang, X M Chen. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. Journal of the American Chemical Society, 2008, 130(18): 6010–6017 https://doi.org/10.1021/ja800550a
33
P Q Liao, H Chen, D D Zhou, S Liu, C He, Z Rui, H Ji, J Zhang, X M Chen. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy & Environmental Science, 2015, 8(3): 1011-1016 https://doi.org/10.1039/C4EE02717E
34
P Q Liao, A X Zhu, W X Zhang, J P Zhang, X M Chen. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6 : 6350 https://doi.org/10.1038/ncomms7350
35
J P Zhang, X M Chen. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, (16): 1689–1699 https://doi.org/10.1039/b516367f
36
X L Qi, R B Lin, Q Chen, J B Lin, J P Zhang, X M Chen. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2(11): 2214–2218 https://doi.org/10.1039/C1SC00421B
37
X C Huang, Y Y Lin, J P Zhang, X M Chen. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559 https://doi.org/10.1002/anie.200503778
38
X J Wang, P Z Li, Y Chen, Q Zhang, H Zhang, X X Chan, R Ganguly, Y Li, J Jiang, Y Zhao. A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Scientific Report, 2013, 3: 1149 doi:10.1038/srep01149
39
Z Lu, F Meng, L Du, W Jiang, H Cao, J Duan, H Huang, H He. A free tetrazolyl decorated metal-organic framework exhibiting high and selective CO2 adsorption. Inorganic Chemistry, 2018, 57(22): 14018–14022 https://doi.org/10.1021/acs.inorgchem.8b02031
40
J S Qin, D Y Du, W L Li, J P Zhang, S L Li, Z M Su, X L Wang, Q Xu, K Z Shao, Y Q Lan. N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science (Cambridge), 2012, 3(6): 2114–2118 https://doi.org/10.1039/c2sc00017b
41
B Li, Z Zhang, Y Li, K Yao, Y Zhu, Z Deng, F Yang, X Zhou, G Li, H Wu, N Nijem, Y J Chabal, Z Lai, Y Han, Z Shi, S Feng, J Li. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angewandte Chemie International Edition, 2012, 51(6): 1412–1415 https://doi.org/10.1002/anie.201105966
42
R Luebke, J F Eubank, A J Cairns, Y Belmabkhout, L Wojtas, M Eddaoudi. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chemical Communications, 2012, 48(10): 1455–1457 https://doi.org/10.1039/C1CC15962C
43
J An, R P Fiorella, S J Geib, N L Rosi. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131(24): 8401–8403 https://doi.org/10.1021/ja901869m
44
J An, S J Geib, N L Rosi. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377 https://doi.org/10.1021/ja902972w
45
J An, S J Geib, N L Rosi. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. Journal of the American Chemical Society, 2010, 132(1): 38–39 https://doi.org/10.1021/ja909169x
46
.Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131(11): 3875–3877 doi.org/10.1021/ja809459e
47
R S Forgan, R A Smaldone, J J Gassensmith, H Furukawa, D B Cordes, Q Li, C E Wilmer, Y Y Botros, R Q Snurr, A M Z Slawin, J F Stoddart. Nanoporous carbohydrate metal–organic frameworks. Journal of the American Chemical Society, 2012, 134(1): 406–417 https://doi.org/10.1021/ja208224f
48
B Seoane, S Castellanos, A Dikhtiarenko, F Kapteijn, J Gascon. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307: 147–187 https://doi.org/10.1016/j.ccr.2015.06.008
49
Y Ban, Y Peng, Y Zhang, H Jin, W Jiao, A Guo, P Wang, Y Li, W Yang. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219: 190–198 https://doi.org/10.1016/j.micromeso.2015.08.013
50
P Z Li, X J Wang, R H D Tan, Q Zhang, R Zou, Y Zhao. Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Advances, 2013, 3(36): 15566–15570 https://doi.org/10.1039/c3ra43246g
51
C X Chen, Q F Qiu, C C Cao, M Pan, H P Wang, J J Jiang, Z W Wei, K Zhu, G Li, C Y Su. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53(83): 11403–11406 https://doi.org/10.1039/C7CC06352K
52
Y Yan, M Juríček, F X Coudert, N A Vermeulen, S Grunder, A Dailly, W Lewis, A J Blake, J F Stoddart, M Schröder. Non-interpenetrated metal–organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: Synthesis, structure, and gas adsorption. Journal of the American Chemical Society, 2016, 138(10): 3371–3381 https://doi.org/10.1021/jacs.5b12312
53
M H Yu, P Zhang, R Feng, Z Q Yao, Y C Yu, T L Hu, X H Bu. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(31): 26177–26183 https://doi.org/10.1021/acsami.7b06491
54
Q G Zhai, X Bu, C Mao, X Zhao, L Daemen, Y Cheng, A J Ramirez-Cuesta, P Feng. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7(1): 13645 https://doi.org/10.1038/ncomms13645
55
Q G Zhai, X Bu, X Zhao, D S Li, P Feng. Pore space partition in metal-organic frameworks. Accounts of Chemical Research, 2017, 50(2): 407–417 https://doi.org/10.1021/acs.accounts.6b00526
56
X Zhao, X Bu, Q G Zhai, H Tran, P Feng. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Journal of the American Chemical Society, 2015, 137(4): 1396–1399 https://doi.org/10.1021/ja512137t
57
A Schneemann, V Bon, I Schwedler, I Senkovska, S Kaskel, R A Fischer. Flexible metal-organic frameworks. Chemical Society Reviews, 2014, 43(16): 6062–6096 https://doi.org/10.1039/C4CS00101J
58
S Bourrelly, P L Llewellyn, C Serre, F Millange, T Loiseau, G Férey. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127(39): 13519–13521 https://doi.org/10.1021/ja054668v
59
F X Coudert, C Mellot-Draznieks, A H Fuchs, A Boutin. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. Journal of the American Chemical Society, 2009, 131(32): 11329–11331 https://doi.org/10.1021/ja904123f
60
Y Q Lan, H L Jiang, S L Li, Q Xu. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Advanced Materials, 2011, 23(43): 5015–5020 https://doi.org/10.1002/adma.201102880
61
P L Llewellyn, S Bourrelly, C Serre, A Vimont, M Daturi, L Hamon, G De Weireld, J S Chang, D Y Hong, Y Kyu Hwang, S Hwa Jhung, G Férey. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24(14): 7245–7250 https://doi.org/10.1021/la800227x
62
B Zheng, Z Yang, J Bai, Y Li, S Li. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chemical Communications, 2012, 48(56): 7025–7027 https://doi.org/10.1039/c2cc17593b
63
Y Mao, D Chen, P Hu, Y Guo, Y Ying, W Ying, X Peng. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15127–15132 https://doi.org/10.1002/chem.201502515
64
D Liu, D Zou, H Zhu, J Zhang. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14(37): 1801454 https://doi.org/10.1002/smll.201801454
65
R Anderson, J Rodgers, E Argueta, A Biong, D A Gomez-Gualdron. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337 https://doi.org/10.1021/acs.chemmater.8b02257
66
D X Xue, A J Cairns, Y Belmabkhout, L Wojtas, Y Liu, M H Alkordi, M Eddaoudi. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 2013, 135(20): 7660–7667 https://doi.org/10.1021/ja401429x
67
R Luebke, Y Belmabkhout, Ł J Weseliński, A J Cairns, M Alkordi, G Norton, Ł Wojtas, K Adil, M Eddaoudi. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chemical Science (Cambridge), 2015, 6(7): 4095–4102 https://doi.org/10.1039/C5SC00614G
68
R Zhong, X Yu, W Meng, J Liu, C Zhi, R Zou. Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16493–16502 https://doi.org/10.1021/acssuschemeng.8b03597
69
Y Lin, H Lin, H Wang, Y Suo, B Li, C Kong, L Chen. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2(35): 14658‒14665 https://doi.org/10.1039/C4TA05760K
70
R Kumar, D Raut, U Ramamurty, C N R Rao. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angewandte Chemie International Edition, 2016, 55(27): 7857–7861 https://doi.org/10.1002/anie.201603320
71
Y Ban, Y Li, Y Peng, H Jin, W Jiao, X Liu, W Yang. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane separation properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(36): 11402–11409 https://doi.org/10.1002/chem.201402287
72
Y Cheng, Y Ying, L Zhai, G Liu, J Dong, Y Wang, M P Christopher, S Long, Y Wang, D Zhao. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97–106 https://doi.org/10.1016/j.memsci.2018.11.060
73
F Li, D Wang, Q J Xing, G Zhou, S S Liu, Y Li, L L Zheng, P Ye, J P Zou. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2019, 243: 621–628 https://doi.org/10.1016/j.apcatb.2018.10.043
74
Y Peng, M Zhao, B Chen, Z Zhang, Y Huang, F Dai, Z Lai, X Cui, C Tan, H Zhang. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Advanced Materials, 2018, 30(3): 1705454 https://doi.org/10.1002/adma.201705454
75
F M Zhang, J L Sheng, Z D Yang, X J Sun, H L Tang, M Lu, H Dong, F C Shen, J Liu, Y Q Lan. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angewandte Chemie International Edition, 2018, 57(37): 12106–12110 https://doi.org/10.1002/anie.201806862
76
P Q Liao, N Y Huang, W X Zhang, J P Zhang, X M Chen. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356(6343): 1193–1196 https://doi.org/10.1126/science.aam7232
77
C T He, Z M Ye, Y T Xu, D D Zhou, H L Zhou, D Chen, J P Zhang, X M Chen. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science (Cambridge), 2017, 8(11): 7560–7565 https://doi.org/10.1039/C7SC03067C
78
C Altintas, S Keskin. Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2739–2750 https://doi.org/10.1021/acssuschemeng.8b05832
79
Z Qiao, C Peng, J Zhou, J Jiang. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15904–15912 https://doi.org/10.1039/C6TA06262H
80
T Watanabe, D S Sholl. Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 2012, 28(40): 14114–14128 https://doi.org/10.1021/la301915s
81
Y G Chung, D A Gómez-Gualdrón, P Li, K T Leperi, P Deria, H Zhang, N A Vermeulen, J F Stoddart, F You, J T Hupp, O K Farha, R Q Snurr. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016, 2(10): e1600909 https://doi.org/10.1126/sciadv.1600909
82
H Guo, G Zhu, I J Hewitt, S Qiu. “Twin copper source” growth of metal-organic gramework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647 https://doi.org/10.1021/ja8074874
83
Z Kang, M Xue, L Fan, L Huang, L Guo, G Wei, B Chen, S Qiu. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014, 7(12): 4053–4060 https://doi.org/10.1039/C4EE02275K
84
Y Hu, X Dong, J Nan, W Jin, X Ren, N Xu, Y M Lee. Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47(2): 737–739 https://doi.org/10.1039/C0CC03927F
85
S Zhou, Y Wei, L Zhuang, L X Ding, H Wang. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 1948–1951 https://doi.org/10.1039/C6TA09469D
86
A Huang, H Bux, F Steinbach, J Caro. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010, 49(29): 4958–4961 https://doi.org/10.1002/anie.201001919
87
A Huang, W Dou, J Caro. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564 https://doi.org/10.1021/ja108774v
88
M C McCarthy, V Varela-Guerrero, G V Barnett, H K Jeong. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641 https://doi.org/10.1021/la102409e
89
A Bétard, H Bux, S Henke, D Zacher, J Caro, R A Fischer. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous and Mesoporous Materials, 2012, 150: 76–82 https://doi.org/10.1016/j.micromeso.2011.09.006
90
S Fan, S Wu, J Liu, D Liu. Fabrication of MIL-120 membranes supported by α-Al2O3 hollow ceramic fibers for H2 separation. RSC Advances, 2015, 5(67): 54757–54761 https://doi.org/10.1039/C5RA09792D
91
J A Bohrman, M A Carreon. Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48(42): 5130–5132 https://doi.org/10.1039/c2cc31821k
92
H Bux, A Feldhoff, J Cravillon, M Wiebcke, Y S Li, J Caro. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chemistry of Materials, 2011, 23(8): 2262–2269 https://doi.org/10.1021/cm200555s
93
X Dong, Y S Lin. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49(12): 1196–1198 https://doi.org/10.1039/c2cc38512k
94
Y S Li, H Bux, A Feldhoff, G L Li, W S Yang, J Caro. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Advanced Materials, 2010, 22(30): 3322–3326 https://doi.org/10.1002/adma.201000857
95
Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1): 36–40 https://doi.org/10.1016/j.memsci.2010.02.023
96
Y Mao, W Cao, J Li, Y Liu, Y Ying, L Sun, X Peng. Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11711–11716 https://doi.org/10.1039/c3ta12402a
97
Y Li, H Liu, H Wang, J Qiu, X Zhang. GO-guided direct growth of highly oriented metal organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141 https://doi.org/10.1039/C7SC04815G
98
Y Sun, Y Liu, J Caro, X Guo, C Song, Y Liu. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angewandte Chemie International Edition, 2018, 57(49): 16088–16093 https://doi.org/10.1002/anie.201810088
99
H T Kwon, H K Jeong, A S Lee, H S An, J S Lee. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311 https://doi.org/10.1021/jacs.5b06730
100
X Feng, X Ding, D Jiang. Covalent organic frameworks. Chemical Society Reviews, 2012, 41(18): 6010–6022 https://doi.org/10.1039/c2cs35157a
101
J Fu, S Das, G Xing, T Ben, V Valtchev, S Qiu. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. Journal of the American Chemical Society, 2016, 138(24): 7673–7680 https://doi.org/10.1021/jacs.6b03348
102
X Ma, P Kumar, N Mittal, A Khlyustova, P Daoutidis, K A Mkhoyan, M Tsapatsis. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011 https://doi.org/10.1126/science.aat4123
H Bux, F Liang, Y Li, J Cravillon, M Wiebcke, J Caro. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001 https://doi.org/10.1021/ja907359t
105
H T Kwona, H K Jeong. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chemical Engineering Science, 2015, 124: 20–26 https://doi.org/10.1016/j.ces.2014.06.021
106
J Yao, D Dong, D Li, L He, G Xu, H Wang. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47(9): 2559–2561 https://doi.org/10.1039/C0CC04734A
107
H T Kwon, H K Jeong. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 2013, 49(37): 3854–3856 doi:10.1039/C3CC41039K
108
M J Lee, H T Kwon, H K Jeong. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161 https://doi.org/10.1002/anie.201708924
109
E Barankova, X Tan, L F Villalobos, E Litwiller, K V Peinemann. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angewandte Chemie International Edition, 2017, 56(11): 2965–2968 https://doi.org/10.1002/anie.201611927
110
A J Brown, N A Brunelli, K Eum, F Rashidi, J R Johnson, W J Koros, C W Jones, S Nair. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75 https://doi.org/10.1126/science.1251181
111
K Eum, A Rownaghi, D Choi, R R Bhave, C W Jones, S Nair. Fluidic processing of high-performance ZIF-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. Advanced Functional Materials, 2016, 26(28): 5011–5018 https://doi.org/10.1002/adfm.201601550
112
Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359 https://doi.org/10.1126/science.1254227
113
L Hao, P Li, T Yang, T S Chung. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231 https://doi.org/10.1016/j.memsci.2013.02.034
114
O Tzialla, C Veziri, X Papatryfon, K G Beltsios, A Labropoulos, B Iliev, G Adamova, T J S Schubert, M C Kroon, M Francisco, L F Zubeir, G E Romanos, G N Karanikolos. Zeolite imidazolate framework–ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440 https://doi.org/10.1021/jp4051287
115
J E Bara, E S Hatakeyama, D L Gin, R D Noble. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies, 2008, 19(10): 1415–1420 https://doi.org/10.1002/pat.1209
116
M A Aroon, A F Ismail, T Matsuura, M M Montazer-Rahmati. Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010, 75(3): 229–242 https://doi.org/10.1016/j.seppur.2010.08.023
117
B Seoane, J Coronas, I Gascon, M E Benavides, O Karvan, J Caro, F Kapteijn, J Gascon. Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chemical Society Reviews, 2015, 44(8): 2421–2454 https://doi.org/10.1039/C4CS00437J
118
T Rodenas, I Luz, G Prieto, B Seoane, H Miro, A Corma, F Kapteijn, F X Llabrés i Xamena, J Gascon. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014, 14(1): 48–55 https://doi.org/10.1038/nmat4113
119
H Fan, Q Shi, H Yan, S Ji, J Dong, G Zhang. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582 https://doi.org/10.1002/anie.201309534
120
S R Venna, M Lartey, T Li, A Spore, S Kumar, H B Nulwala, D R Luebke, N L Rosi, E Albenze. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3(9): 5014–5022 https://doi.org/10.1039/C4TA05225K
121
M W Anjum, F Vermoortele, A L Khan, B Bueken, D E De Vos, I F J Vankelecom. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201 https://doi.org/10.1021/acsami.5b08964
122
O G Nik, X Y Chen, S Kaliaguine. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413: 48–61 https://doi.org/10.1016/j.memsci.2012.04.003
123
T Yang, Y Xiao, T S Chung. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011, 4(10): 4171–4180 https://doi.org/10.1039/c1ee01324f
124
B Zornoza, A Martinez-Joaristi, P Serra-Crespo, C Tellez, J Coronas, J Gascon, F Kapteijn. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524 https://doi.org/10.1039/c1cc13431k
125
J Sánchez-Laínez, B Zornoza, S Friebe, J Caro, S Cao, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, C Le Guillouzer, G Clet, M Daturi, C Téllez, J Coronas. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53 https://doi.org/10.1016/j.memsci.2016.05.039
126
A Sabetghadam, B Seoane, D Keskin, N Duim, T Rodenas, S Shahid, S Sorribas, C L Guillouzer, G Clet, C Tellez, M Daturi, J Coronas, F Kapteijn, J Gascon. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016, 26(18): 3154–3163 https://doi.org/10.1002/adfm.201505352
127
Y Zhang, X Feng, H Li, Y Chen, J Zhao, S Wang, L Wang, B Wang. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 127(14): 4333–4337 https://doi.org/10.1002/ange.201500207
128
T H Bae, J S Lee, W Qiu, W J Koros, C W Jones, S Nair. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angewandte Chemie International Edition, 2010, 49(51): 9863–9866 https://doi.org/10.1002/anie.201006141
129
M J C Ordoñez, K J Balkus Jr, J P Ferraris, I H Musselman. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1): 28–37 https://doi.org/10.1016/j.memsci.2010.06.017
130
T Yang, T S Chung. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38(1): 229–239 https://doi.org/10.1016/j.ijhydene.2012.10.045
131
J Shen, G Liu, K Huang, Q Li, K Guan, Y Li, W Jin. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165 https://doi.org/10.1016/j.memsci.2016.04.045
132
X Liu, H Jin, Y Li, H Bux, Z Hu, Y Ban, W Yang. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. Journal of Membrane Science, 2013, 428: 498–506 https://doi.org/10.1016/j.memsci.2012.10.028
133
N Kornienko, Y Zhao, C S Kley, C Zhu, D Kim, S Lin, C J Chang, O M Yaghi, P Yang. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 2015, 137(44): 14129–14135 https://doi.org/10.1021/jacs.5b08212