Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (5): 793-801   https://doi.org/10.1007/s11705-019-1876-2
  本期目录
Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system
Chenggang Qiu1, Alei Zhang1,2, Sha Tao1, Kang Li1, Kequan Chen1,2(), Pingkai Ouyang1,2
1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
 全文: PDF(719 KB)   HTML
Abstract

Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙L1 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙L1). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an OD600 of 40, 150 mg∙L1 naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg∙L1 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain.

Key wordsBacillus cereus QCG    naphthalene    1-naphthol    ARTP mutagenesis    high-throughput screening    4-aminoantipyrine
收稿日期: 2019-02-17      出版日期: 2020-05-25
Corresponding Author(s): Kequan Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 793-801.
Chenggang Qiu, Alei Zhang, Sha Tao, Kang Li, Kequan Chen, Pingkai Ouyang. Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system. Front. Chem. Sci. Eng., 2020, 14(5): 793-801.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1876-2
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I5/793
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 R C Back. Carbamate insecticides, significant developments in eight years with sevin insecticides. Journal of Agricultural and Food Chemistry, 1965, 13(3): 198–199
https://doi.org/10.1021/jf60139a001
2 K A Canada, I Sachiyo, H Shim, T K Wood. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. Journal of Bacteriology, 2002, 184(2): 344–349
https://doi.org/10.1128/JB.184.2.344-349.2002
3 P Molina-Espeja, M Cañellas, F J Plou, M Hofrichter, F Lucas, V Guallar, M Alcalde. Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem, 2016, 17(4): 341–349
https://doi.org/10.1002/cbic.201500493
4 T Y Zhang, Q S Yang, Z Lu, X Liu, Z Wang, X X Li. Progress of catalytic synthesis of naphthol. Chemical Industry & Engineering Progress, 2009, 28(1): 55–61
5 A T Martínez , F J Ruiz-Duenas, S Camarero, A Serrano, D Linde, H Lund, J Vind, M Tovborg, O M Herold-Majumdar, M Hofrichter, et al. Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances, 2017, 35(4): 1322–1332
https://doi.org/10.1016/j.biotechadv.2017.06.003
6 A L Zhang, G G Wei, X F Mo, N Zhou, K Q Chen, P K Ouyang. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-D-glucosamine. Green Chemistry, 2018, 20(10): 2320–2327
https://doi.org/10.1039/C8GC00265G
7 L Tomás-Gallardo, H Gomezalvarez, E Santero, B Floriano. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microbial Biotechnology, 2014, 7(2): 100–113
https://doi.org/10.1111/1751-7915.12096
8 M Zeinali, M Vossoughi, S K Ardestani. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere, 2008, 72(6): 905–909
https://doi.org/10.1016/j.chemosphere.2008.03.038
9 M Das, A Bhattacharya, S Banu, J Kotoky. Enhanced biodegradation of anthracene by Bacillus cereus strain JMG-01 isolated from hydrocarbon contaminated soils. Soil & Sediment Contamination, 2017, 26(5): 510–525
https://doi.org/10.1080/15320383.2017.1357111
10 L Liu, R D Schmid, V B Urlacher. Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Applied Microbiology and Biotechnology, 2006, 72(5): 876–882
https://doi.org/10.1007/s00253-006-0355-0
11 L Y Rui, Y M Kwon, A Fishman, K F Reardon, T K Wood. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Applied and Environmental Microbiology, 2004, 70(6): 3246–3252
https://doi.org/10.1128/AEM.70.6.3246-3252.2004
12 S V B J Garikipati, A M Mciver, T L Peeples. Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Applied and Environmental Microbiology, 2009, 75(20): 6545–6552
https://doi.org/10.1128/AEM.00434-09
13 S V B J Garikipati, T L Peeples. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. Journal of Biotechnology, 2015, 210(1): 91–99
https://doi.org/10.1016/j.jbiotec.2015.06.419
14 R M Liu, L Y Liang, W J Cao, M K Wu, K Q Chen, J F Ma, M Jiang, P Wei, P K Ouyang. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresource Technology, 2013, 135(3): 574–577
https://doi.org/10.1016/j.biortech.2012.08.120
15 M Inoue, T Inoue, M Okami, M Sayama, Y Hirai. ChemInform abstract: Bacterial oxidation of naphthalene to 1-naphthol. ChemInform, 2010, 26(1): 1315–1316
https://doi.org/10.1002/chin.199501126
16 T Inoue, T Yasuyoshi, N Morishita, M Sayama, M Inoue. Oxydation of polycyclic aromatic hydrocarbons in the presence of bacteria. Nippon Kagaku Kaishi, 1998, (3): 196–200
https://doi.org/10.1246/nikkashi.1998.196
17 M Z Wang, Y Yang, Z H Chen, Y Z Chen, Y M Wen, B L Chen. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresource Technology, 2016, 222: 130–138
https://doi.org/10.1016/j.biortech.2016.09.128
18 Y Zhang, M L He, S M Zou, C Fei, Y Q Yan, S Y Zheng, A A Rajper, C H Wang. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation. Bioresource Technology, 2016, 207: 268–275
https://doi.org/10.1016/j.biortech.2016.01.120
19 X Zhang, X M Zhang, G Q Xu, X J Zhang, J S Shi, Z H Xu. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(4): 1–13
https://doi.org/10.1007/s00253-018-9025-2
20 M Laroussi, F Leipold. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 2004, 233(1): 81–86
https://doi.org/10.1016/j.ijms.2003.11.016
21 G Li, H P Li, L Y Wang, S Wang, H X Zhao, W T Xin . Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Applied Physics Letters, 2008, 92(22): 221504
22 W L Dong, F Wang, F Huang, Y Wang, J Zhou, X Ye, Z K Li, Y Hou, Y Huang, J Ma, M Jiang, Z Cui. Metabolic pathway involved in 6-chloro-2-benzoxazolinone degradation by Pigmentiphaga sp. strain DL-8 and identification of the novel metal-dependent hydrolase CbaA. Applied and Environmental Microbiology, 2016, 82(14): 4169–4179
https://doi.org/10.1128/AEM.00532-16
23 S Binder, G Schendzielorz, N Stäbler, K Krumbach, K Hoffmann, M Bott, L Eggeling. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): R40
https://doi.org/10.1186/gb-2012-13-5-r40
24 Y N Liu, Q G Li, P Zheng, Z D Zhang, Y F Liu, C M Sun, G Q Cao, W J Zhou, X W Wang, D W Zhang, et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 121
https://doi.org/10.1186/s12934-015-0311-8
25 J Brosius, T J Dull, D D Sleeter, H F Noller. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology, 1981, 148(2): 107–127
https://doi.org/10.1016/0022-2836(81)90508-8
26 Z K Hao, Y J Cai, X R Liao, X H Liang, J Y Liu, Z Y Fang, M M Hu, D B Zhang. Chitinolyticbacter meiyuanensis SYBC-H1T, Gen. Nov., sp. Nov., a chitin-degrading bacterium isolated from soil. Current Microbiology, 2011, 62(6): 1732–1738
https://doi.org/10.1007/s00284-011-9921-5
27 J D Thompson, T J Gibson, F Plewniak, F Jeanmougin, D G Higgins. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(25): 4876–4882
https://doi.org/10.1093/nar/25.24.4876
28 T Vralstad, E Myhre, T Schumacher. Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the helotiales in burnt and metal polluted habitats. New Phytologist, 2002, 105(1): 131–148
https://doi.org/10.1046/j.1469-8137.2002.00444.x
29 W Ludwig, O Strunk, S Klugbauer, N Klugbauer, M Weizenegger, J Neumaier, M Bachleitner, K H Schleifer. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis, 2010, 19(4): 554–568
https://doi.org/10.1002/elps.1150190416
30 M Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111–120
https://doi.org/10.1007/BF01731581
31 G Norwitz, P N Keliher. Effect of acidity and alkalinity on the distillation of phenol: Interferences of aromatic amines and formaldehyde with the 4-aminoantipyrine spectro-photometric method for phenol. Analytica Chimica Acta, 1980, 119(1): 99–111
https://doi.org/10.1016/S0003-2670(00)00034-9
32 Y Lu, L Y Wang, K Ma, G Li, C Zhang, H X Zhao, Q H Lai, H P Li, X H Xing. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochemical Engineering Journal, 2011, 55(1): 17–22
https://doi.org/10.1016/j.bej.2011.02.020
33 S Cao, X Zhou, W B Jin, F Wang, R J Tu, S F Han, H Y Chen, C Chen, G J Xie, F Ma. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 2017, 244(2): 1400–1406
https://doi.org/10.1016/j.biortech.2017.05.039
34 C K Gu, G Y Wang, S Mai, P F Wu, J R Wu, G H Wang, H J Liu, J A Zhang. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 2017, 101(5): 2189–2199
https://doi.org/10.1007/s00253-017-8093-z
35 X M Cao, Z S Luo, W Z Zeng, S Xu, L Q Zhao, J W Zhou. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Applied Microbiology and Biotechnology, 2018, 102(2): 703–712
https://doi.org/10.1007/s00253-017-8658-x
36 H Y Li, W Z Zeng, J W Zhou. High-throughput screening of Methylobacterium extorquens for high production of pyrroloquinoline quinone. Chinese Journal of Biotechnology, 2018, 34(5): 794–802
37 X Zhang, X M Zhang, G Q Xu, X Zhang, J Shi, Z Xu. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(14): 5939–5951
https://doi.org/10.1007/s00253-018-9025-2
38 L Y Wang, Z L Huang, G Li, H X Zhao, X H Xing, W T Sun, H P Li, Z X Gou, C Y Bao. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108(3): 851–858
https://doi.org/10.1111/j.1365-2672.2009.04483.x
39 M Hassanshahian, N A Boroujeni. Enrichment and identification of naphthalene degrading bacteria from the Persian Gulf. Marine Pollution Bulletin, 2016, 107(1): 59–65
https://doi.org/10.1016/j.marpolbul.2016.04.020
40 Y Tao, W E Bentley, T K Wood. Phenol and 2-naphthol production by toluene 4-monooxygenases using an aqueous/dioctyl phthalate system. Applied Microbiology and Biotechnology, 2005, 68(5): 614–621
https://doi.org/10.1007/s00253-005-1939-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed