Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (2): 258-266   https://doi.org/10.1007/s11705-019-1878-0
  本期目录
Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions
Peng Luo, Yejun Guan, Hao Xu(), Mingyuan He, Peng Wu()
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
 全文: PDF(1899 KB)   HTML
Abstract

Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were in situ reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this in situ recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.

Key wordscore/shell ZSM-5    in situ recrystallization    mesopore    ketalation and acetalization reactions
收稿日期: 2019-03-07      出版日期: 2020-03-24
Corresponding Author(s): Hao Xu,Peng Wu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 258-266.
Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1878-0
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I2/258
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Sample Pore volume /(cm3·g–1) SSAd) /(cm2·g–1)
Vtotala) Vmicrob) Vmesoc) Stotala) Smicro Sextb)
Pristine ZSM-5 0.23 0.11 0.12 381 270 111
Re-ZSM-5-0.25 0.36 0.13 0.23 468 290 178
Re-ZSM-5-0.30 0.36 0.09 0.27 412 215 197
Tab.1  
Fig.6  
Fig.7  
Fig.8  
1 A Corma, A Martinez. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144
https://doi.org/10.1002/adma.19950070206
2 Z H Wei, T F Xia, M H Liu, Q S Cao, Y R Xu, K K Zhu, X D Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460
https://doi.org/10.1007/s11705-015-1542-2
3 C Feng, K Khulbe, T Matsuura, R Farnood, A Ismail, J Membr. Recent progress in zeolite/zeotype membranes. Journal of Membrane Science and Research, 2015, 1(2): 49–72
4 B M Weckhuysen, J H Yu. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44(20): 7022–7024
https://doi.org/10.1039/C5CS90100F
5 P Cnudde, K De Wispelaere, L Vanduyfhuys, R Demuynck, J Van der Mynsbrugge, M Waroquier, V Van Speybroeck. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catalysis, 2018, 8(10): 9579–9595
https://doi.org/10.1021/acscatal.8b01779
6 A Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420
https://doi.org/10.1021/cr960406n
7 K A Tarach, K Pyra, S Siles, M Cabrera, K G Marek. Operando study reveals the superior cracking activity and stability of hierarchical ZSM-5 catalyst for the cracking of low-density polyethylene. ACS Sustainable Chemistry & Engineering, 2018, 12(3): 633–638
8 M Hartmann. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
https://doi.org/10.1002/anie.200460644
9 T Tago, H Konno, Y Nakasaka, T Masuda. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163
https://doi.org/10.1007/s10563-012-9141-4
10 D R Wang, L Zhang, L Chen, H H Wu, P Wu. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521
https://doi.org/10.1039/C4TA06438K
11 S M Xu, X X Zhang, D G Cheng, F Q Chen, X H Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
12 J Zhu, X J Meng, F S Xiao. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248
https://doi.org/10.1007/s11705-013-1329-2
13 K Möller, T Bein. Mesoporosity—a new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707
https://doi.org/10.1039/c3cs35488a
14 C J H Jacobsen, C Madsen, J Houzvicka, I Schmidt, A Carlsson. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
https://doi.org/10.1021/ja000744c
15 I Schmidt, A Boisen, E Gustavsson, K Stahl, S Pehrson, S Dahl, A Carlsson, C J H Jacobsen. Carbon nanotube template growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
https://doi.org/10.1021/cm011206h
16 Y Tao, H Kanoh, K Kaneko. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
https://doi.org/10.1021/ja0299405
17 F S Xiao, L F Wang, C Y Yin, K F Lin, Y Di, J X Li, R R Xu, D S Su, R Schlögl, T Yokoi, T Tatsumi. Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 118(19): 3162–3165
https://doi.org/10.1002/ange.200600241
18 M Choi, H S Cho, R Srivastava, C Venkatesan, D H Choi, R Ryoo. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporousity. Nature Materials, 2006, 5(3): 718–723
https://doi.org/10.1038/nmat1705
19 H Y Chen, M F Yang, W J Shang, Y Tong, B Y Liu, X L Han, J B Zhang, Q Q Hao, M Sun, X X Ma. Organosilane Surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966
https://doi.org/10.1021/acs.iecr.8b00849
20 M Choi, K Na, J Kim, Y Sakamoto, O Terasaki, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(8288): 246–249
https://doi.org/10.1038/nature08288
21 S V Donk, A H Janssen, J H Bitter, K P Jong. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
https://doi.org/10.1081/CR-120023908
22 B D Song, Y Q Li, G Cao, Z H Sun, X Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574
https://doi.org/10.1007/s11705-017-1654-y
23 K Sadowska, A Wach, Z Olejniczak, P Kuśtrowski, J Datka. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(14): 82–88
https://doi.org/10.1016/j.micromeso.2012.03.045
24 D Verboekend, J P Ramírez. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147
https://doi.org/10.1002/chem.201002589
25 J P Ramírez, D Verboekend, A Bonilla, S Abello. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(23): 3972–3979
https://doi.org/10.1002/adfm.200901394
26 Y Han, P Pitukmanorom, L Zhao, J Y Ying. Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7(3): 326–332
https://doi.org/10.1002/smll.201001180
27 D R Wang, L Xu, P Wu. Hierarchical, core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545
https://doi.org/10.1039/C4TA02740J
28 P Peng, S Z Sun, Y X Liu, X M Liu, S Mintova, Z F Yan. Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529(9): 283–293
https://doi.org/10.1016/j.jcis.2018.06.013
29 Y Zuo, W Song, C Dai, Y He, M Wang, X Wang, X Guo. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Applied Catalysis A, General, 2013, 453(32): 272–279
https://doi.org/10.1016/j.apcata.2012.12.027
30 C G Li, Y Q Lu, H H Wu, P Wu, M Y He. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chemical Communications, 2015, 51(80): 14905–14908
https://doi.org/10.1039/C5CC05278E
31 T Xue, Y M Wang, M Y He. Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sciences, 2012, 14(4): 409–418
https://doi.org/10.1016/j.solidstatesciences.2012.01.023
32 E Astorino, J B Peri, R J Willey, G Busca. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482–500
https://doi.org/10.1006/jcat.1995.1313
33 A Zecchina, S Bordiga, G Spoto, L Marchese, G Petrini, G Leofanti, M Padoan. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. Journal of Physical Chemistry, 1992, 96(12): 4991–4997
https://doi.org/10.1021/j100191a048
34 L M Kustov, V B Kazansky, S Beran, L Kubelkova, P Jiru. Adsorption of carbon monoxide on ZSM-5 zeolites. Infrared spectroscopic study and quantum-chemical calculations. Journal of Physical Chemistry, 1987, 91(20): 5247–5251
https://doi.org/10.1021/j100304a023
35 P Wu, T Komatsu, T I R Yashima. IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. Journal of Physical Chemistry, 1995, 99(27): 10923–10931
https://doi.org/10.1021/j100027a036
36 A Zecchina, S Bordiga, G Spoto, D Scarano, G Petrini, G Leofanti, M Padovan, C O Arean. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2959–2967
https://doi.org/10.1039/FT9928802959
37 P E Parry. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963, 2(5): 371–379
https://doi.org/10.1016/0021-9517(63)90102-7
38 M E Franke, U Simon. Solvate-supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2004, 5(4): 465–472
https://doi.org/10.1002/cphc.200301011
39 K Suzuki, Y Aovagi, N Katada, M Choi, R Ryoo, M Niwa. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Catalysis Today, 2008, 132(1–4): 38–45
https://doi.org/10.1016/j.cattod.2007.12.010
40 B K Singh, D D Xu, L Han, J Ding, Y M Wang, S A Che. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chemistry of Materials, 2014, 26(24): 7183–7188
https://doi.org/10.1021/cm503919h
41 J W Jung, C B Jo, F M Mota, J Cho, R Ryoo. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A, General, 2015, 492(8): 68–75
https://doi.org/10.1016/j.apcata.2014.12.019
[1] Supplementary Material 1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed