Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 460-469   https://doi.org/10.1007/s11705-019-1881-5
  本期目录
Perspective of mixed matrix membranes for carbon capture
Shinji Kanehashi1(), Colin A. Scholes2
1. Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
2. Peter Cook Centre for Carbon Capture and Storage Research, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
 全文: PDF(1397 KB)   HTML
Abstract

Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.

Key wordsmembranes    polymeric    mixed matrix    impurities
收稿日期: 2019-03-18      出版日期: 2020-04-28
Corresponding Author(s): Shinji Kanehashi   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 460-469.
Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1881-5
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/460
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 R W Baker. Membrane Technology and Applications. Hoboken: John Wiley & Sons Ltd., 2004, 1–14
2 B D Freeman, I Pinnau. Polymer Membranes for Gas and Vapor Separation. Washington, DC: American Chemical Society, 1999, 1–27
3 M Galizia, W S Chi, Z P Smith, T C Merkel, R W Baker, B D Freeman. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules, 2017, 50(20): 7809–7843
https://doi.org/10.1021/acs.macromol.7b01718
4 N Bauer, I Mouratiadou, G Luderer, L Baumstark, R J Brecha, O Edenhofer, E Kriegler. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Climatic Change, 2016, 136(1): 69–82
https://doi.org/10.1007/s10584-013-0901-6
5 M Mikkelsen, M Jørgensen, F C Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3(1): 43–81
https://doi.org/10.1039/B912904A
6 L M Robeson. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
7 L M Robeson. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
8 B D Freeman. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2): 375–380
https://doi.org/10.1021/ma9814548
9 T S Chung, L Y Jiang, Y Li, S Kulprathipanja. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507
https://doi.org/10.1016/j.progpolymsci.2007.01.008
10 M Rezakazemi, A Ebadi Amooghin, M M Montazer-Rahmati, A F Ismail, T Matsuura. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861
https://doi.org/10.1016/j.progpolymsci.2014.01.003
11 G Dong, H Li, V Chen. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4610–4630
https://doi.org/10.1039/c3ta00927k
12 S Kanehashi. Development of hybrid membranes for carbon capture. Kobunshi Ronbunshu, 2016, 73(5): 475–490
https://doi.org/10.1295/koron.2016-0029
13 A F Ismail, K Khulbe, T Matsuura. Gas Separation Membranes. New York: Springer International Publishing, 2015, 11–35
14 N Hilal, A F Ismail, T Matsuura, D Oatley-Radcliffe. Membrane Characterization. Amsterdam: Elsevier, 2017, 309–336
15 S Kanehashi, K Nagai. Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005, 253(1-2): 117–138
https://doi.org/10.1016/j.memsci.2005.01.003
16 S Kanehashi, G Q Chen, C A Scholes, B Ozcelik, C Hua, L Ciddor, P D Southon, D M D’Alessandro, S E Kentish. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482: 49–55
https://doi.org/10.1016/j.memsci.2015.01.046
17 D A G Bruggeman. Calculation of different physical Constants of heterogeneous substances. I. Dielectric Constants and conductivities of the mixed bodies of isotropic substances. Annalen der Physik, 1935, 416(7): 636–664 (in German)
https://doi.org/10.1002/andp.19354160705
18 T B Lewis, L E Nielsen. Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science, 1970, 14(6): 1449–1471
https://doi.org/10.1002/app.1970.070140604
19 R Mahajan, W J Koros. Mixed matrix membrane materials with glassy polymers. Part 1. Polymer Engineering and Science, 2002, 42(7): 1420–1431
https://doi.org/10.1002/pen.11041
20 A Bondi. van der Waals volume and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451
https://doi.org/10.1021/j100785a001
21 D W van Krevelen. Properties of Polymers. 4th ed. Amsterdam: Elsevier, 2009
22 S Kanehashi, H Gu, R Shindo, S Sato, T Miyakoshi, K Nagai. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane. Journal of Applied Polymer Science, 2013, 128(6): 3814–3823
https://doi.org/10.1002/app.38572
23 R Shindo, M Kishida, H Sawa, T Kidesaki, S Sato, S Kanehashi, K Nagai. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. Journal of Membrane Science, 2014, 454: 330–338
https://doi.org/10.1016/j.memsci.2013.12.031
24 Q Xin, J Ouyang, T Liu, Z Li, Z Li, Y Liu, S Wang, H Wu, Z Jiang, X Cao. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Applied Materials & Interfaces, 2015, 7(2): 1065–1077
https://doi.org/10.1021/am504742q
25 R Patel, J T Park, H P Hong, J H Kim, B R Min. Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polymers for Advanced Technologies, 2011, 22(5): 768–772
https://doi.org/10.1002/pat.1556
26 S Kanehashi, G Q Chen, D Danaci, P A Webley, S E Kentish. Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization? Separation and Purification Technology, 2017, 183: 333–340
https://doi.org/10.1016/j.seppur.2017.04.013
27 T S Chung, S S Chan, R Wang, Z Lu, C He. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211(1): 91–99
https://doi.org/10.1016/S0376-7388(02)00385-X
28 D Q Vu, W J Koros, S J Miller. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334
https://doi.org/10.1016/S0376-7388(02)00429-5
29 Y Zhang, I H Musselman, J P Ferraris, K J Balkus. Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores. Industrial & Engineering Chemistry Research, 2008, 47(8): 2794–2802
https://doi.org/10.1021/ie0713689
30 H H Yong, H C Park, Y S Kang, J Won, W N Kim. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. Journal of Membrane Science, 2001, 188(2): 151–163
https://doi.org/10.1016/S0376-7388(00)00659-1
31 B Zornoza, C Téllez, J Coronas. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 2011, 368(1-2): 100–109
https://doi.org/10.1016/j.memsci.2010.11.027
32 A L Khan, C Klaysom, A Gahlaut, A U Khan, I F J Vankelecom. Mixed matrix membranes comprising of Matrimid and –SO3H functionalized mesoporous MCM-41 for gas separation. Journal of Membrane Science, 2013, 447: 73–79
https://doi.org/10.1016/j.memsci.2013.07.011
33 S S Hosseini, Y Li, T S Chung, Y Liu. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302(1-2): 207–217
https://doi.org/10.1016/j.memsci.2007.06.062
34 F Moghadam, M R Omidkhah, E Vasheghani-Farahani, M Z Pedram, F Dorosti. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136
https://doi.org/10.1016/j.seppur.2010.11.032
35 Q Song, S K Nataraj, M V Roussenova, J C Tan, D J Hughes, W Li, P Bourgoin, M A Alam, A K Cheetham, S A Al-Muhtaseb, E Sivaniah. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012, 5(8): 8359–8369
https://doi.org/10.1039/c2ee21996d
36 Y Zhang, K J Balkus Jr, I H Musselman, J P Ferraris. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325(1): 28–39
https://doi.org/10.1016/j.memsci.2008.04.063
37 E V Perez, K J Balkus Jr, J P Ferraris, I H Musselman. Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328(1-2): 165–173
https://doi.org/10.1016/j.memsci.2008.12.006
38 Y Zhang, I H Musselman, J P Ferraris, K J Balkus Jr. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. Journal of Membrane Science, 2008, 313(1-2): 170–181
https://doi.org/10.1016/j.memsci.2008.01.005
39 M J C Ordoñez, K J Balkus Jr, J P Ferraris, I H Musselman. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1-2): 28–37
https://doi.org/10.1016/j.memsci.2010.06.017
40 K Nagai, T Masuda, T Nakagawa, B D Freeman, I Pinnau. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Progress in Polymer Science, 2001, 26(5): 721–798
https://doi.org/10.1016/S0079-6700(01)00008-9
41 A Bos, I G M Pünt, M Wessling, H Strathmann. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78
https://doi.org/10.1016/S0376-7388(98)00299-3
42 M D Donohue, B S Minhas, S Y Lee. Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes. Journal of Membrane Science, 1989, 42(3): 197–214
https://doi.org/10.1016/S0376-7388(00)82376-5
43 A F Ismail, W Lorna. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 2002, 27(3): 173–194
https://doi.org/10.1016/S1383-5866(01)00211-8
44 M Wessling, S Schoeman, T van der Boomgaard, C A Smolders. Plasticization of gas separation membranes. Gas Separation & Purification, 1991, 5(4): 222–228
https://doi.org/10.1016/0950-4214(91)80028-4
45 X Duthie, S Kentish, S J Pas, A J Hill, C Powell, K Nagai, G Stevens, G Qiao. Thermal treatment of dense polyimide membranes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(18): 1879–1890
https://doi.org/10.1002/polb.21521
46 X J Duthie, S E Kentish, C E Powell, G G Qiao, K Nagai, G W Stevens. Plasticization suppression in grafted polyimide-epoxy network membranes. Industrial & Engineering Chemistry Research, 2007, 46(24): 8183–8192
https://doi.org/10.1021/ie070689h
47 S Kanehashi, T Nakagawa, K Nagai, X Duthie, S Kentish, G Stevens. Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. Journal of Membrane Science, 2007, 298(1–2): 147–155
https://doi.org/10.1016/j.memsci.2007.04.012
48 S Kanehashi, M Onda, R Shindo, S Sato, S Kazama, K Nagai. Synthesis, characterization, and CO2 permeation properties of acetylene-terminated polyimide membranes. Polymer Engineering and Science, 2013, 53(8): 1667–1675
https://doi.org/10.1002/pen.23425
49 J D Wind, C Staudt-Bickel, D R Paul, W J Koros. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules, 2003, 36(6): 1882–1888
https://doi.org/10.1021/ma025938m
50 A Bos, I Pünt, H Strathmann, M Wessling. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(5): 1088–1093
https://doi.org/10.1002/aic.690470515
51 S Shahid, K Nijmeijer. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC). Journal of Membrane Science, 2014, 459: 33–44
https://doi.org/10.1016/j.memsci.2014.02.009
52 C A Scholes, S E Kentish, G W Stevens. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44
https://doi.org/10.1080/15422110802411442
53 T C Merkel, H Lin, X Wei, R Baker. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139
https://doi.org/10.1016/j.memsci.2009.10.041
54 R W Baker, K Lokhandwala. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
https://doi.org/10.1021/ie071083w
55 L Deng, M B Hägg. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 2010, 4(4): 638–646
https://doi.org/10.1016/j.ijggc.2009.12.013
56 G Q Chen, S Kanehashi, C M Doherty, A J Hill, S E Kentish. Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 2015, 487: 249–255
https://doi.org/10.1016/j.memsci.2015.03.074
57 S Kanehashi, S Konishi, K Takeo, K Owa, H Kawakita, S Sato, T Miyakoshi, K Nagai. Effect of OH group on the water vapor sorption property of adamantane-containing polymer membranes. Journal of Membrane Science, 2013, 427: 176–185
https://doi.org/10.1016/j.memsci.2012.09.043
58 S Kanehashi, Y Tomita, K Obokata, T Kidesaki, S Sato, T Miyakoshi, K Nagai. Effect of substituted groups on characterization and water vapor sorption property of polyhedral oligomeric silsesquioxane (POSS)-containing methacryl polymer membranes. Polymer, 2013, 54(9): 2315–2323
https://doi.org/10.1016/j.polymer.2013.03.002
59 H Azher, C A Scholes, G W Stevens, S E Kentish. Water permeation and sorption properties of Nafion 115 at elevated temperatures. Journal of Membrane Science, 2014, 459: 104–113
https://doi.org/10.1016/j.memsci.2014.01.049
60 H T Lu, S Kanehashi, C A Scholes, S E Kentish. The potential for use of cellulose triacetate membranes in post combustion capture. International Journal of Greenhouse Gas Control, 2016, 55: 97–104
https://doi.org/10.1016/j.ijggc.2016.11.002
61 J C M Farla, C A Hendriks, K Blok. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29(4): 439–461
https://doi.org/10.1007/BF01092428
62 K Thambimuthu, M Soltanieh, J C Abandas. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005
63 O W Awe, Y Zhao, A Nzihou, D P Minh, N Lyczko. A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 2017, 8(2): 267–283
https://doi.org/10.1007/s12649-016-9826-4
64 S Kanehashi, G Q Chen, L Ciddor, A Chaffee, S E Kentish. The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492: 471–477
https://doi.org/10.1016/j.memsci.2015.05.046
65 S Kanehashi, A Aguiar, H T Lu, G Q Chen, S Kentish. Effects of industrial gas impurities on the performance of mixed matrix membranes. Journal of Membrane Science, 2018, 549: 686–692
https://doi.org/10.1016/j.memsci.2017.10.056
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed