Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (6): 1100-1111   https://doi.org/10.1007/s11705-019-1891-3
  本期目录
Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)
Ehsan Rahmani, Mohammad Rahmani()
Department of Chemical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
 全文: PDF(1632 KB)   HTML
Abstract

A solvothermal method was used to synthesize MIL-101(Fe) and MIL-88(Fe), which were used for alkylation of benzene. The synthesized catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, dynamic light scattering, and BET techniques. Metal-organic frameworks (MOFs) were modeled to investigate the catalytic performance and existence of mass transfer limitations. Calculated effectiveness factors revealed absence of internal and external mass transfer. Sensitivity analysis revealed best operating conditions over MIL-101 at 120°C and 5 bar and over MIL-88 at 142°C and 9 bar.

Key wordsMOFs    alkylation    ethylbenzene    catalysts pellet model    kinetic model    sensitivity analysis
收稿日期: 2019-04-25      出版日期: 2020-09-11
Corresponding Author(s): Mohammad Rahmani   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1100-1111.
Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe). Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1891-3
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I6/1100
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Catalyst Particle size /nm Surface area /(m2·g–1) Pore diameter /nm Porosity /e
MIL-101 685 1800 2 0.55
MIL-88 567 3040 0.9 0.75
Tab.1  
Fig.7  
Catalyst Temperature /°C Model parameter Activation energy /(kJ·mol–1) R2
ks /(mol·g–1·min–1) KB /(mL·mol–1) KA /(mL·mol–1)
MIL-101(Fe) 125 1.429×104 1.97 543.2 49.9 0.96
150 1.359×104 0.46 386.4 0.97
175 2564.0 0.14 218.1 0.96
MIL-88(Fe) 150 2980.0 0.59 537.5 172.3 0.98
175 4.582×104 0.30 299.0 0.96
200 2.020×104 0.16 283.0 0.98
Tab.2  
Fig.8  
Fig.9  
Fig.10  
Catalyst Density /(g·cm–3) Deff /(cm2·s–1) Cwp rA,obsVpApC Agkg
MIL-101(Fe) 0.62 1.93×10–3 8.86×10–4 2.47×10–4
MIL-88(Fe) 1.51 1.55×10–3 1.70×10–3 1.70×10–4
Tab.3  
Fig.11  
Fig.12  
Deff (m2·s–1) Effective diffusion coefficient
DAB (m2·s–1) Molecular diffusion coefficient
Dk (m2·s–1) Knudsen diffusion coefficient
Dpore (m2·s–1) Pore diffusion coefficient
CA (mol·L–1) Concentration of alkylation agent
rA (mol·m–3·min–1) Alkylation agent reaction rate
T (°C) Reaction temperature
r (m) Pellet radius
f= CA/CA0 Dimensionless concentration
r = r/R0 Dimensionless radius
MA (g·mol–1) Molecular weight of alkylation agent
MB (g·mol–1) Molecular weight of benzene
P (bar) Pressure
s (Å) Effective collision diameter
W Collision integral
e Pellet porosity
t Pellet tortuosity
h Effectiveness factor
CWP Weisz-Prator criterion
Vp (m3) Pellet volume
Ap (m2) Pellet surface
CAg (mol·L–1) Alkylation agent gas phase concentration
kg (m·s–1) Gas phase local mass transfer coefficient
rAobs (mol·m–3·min–1) Alkylation agent observed rate
Pe Pecledt number
Sc Schmidt number
Re Reynolds number
  
1 D J Tranchemontagne, Z Ni, M O’Keeffe, O M Yaghi. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147
https://doi.org/10.1002/anie.200705008
2 S S Kaye, A Dailly, O M Yaghi, J R Long. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007, 129(46): 14176–14177
https://doi.org/10.1021/ja076877g
3 N Al-Janabi, A Alfutimie, F R Siperstein, X Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
https://doi.org/10.1007/s11705-015-1552-0
4 M Zhang, B Huang, H Jiang, Y Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2017, 11(4): 594–602
https://doi.org/10.1007/s11705-017-1668-5
5 X Zhang, F X Llabrés i Xamena, A Corma. Gold(III)—metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 2009, 265(2): 155–160
https://doi.org/10.1016/j.jcat.2009.04.021
6 Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
https://doi.org/10.1007/s11705-016-1596-9
7 Z Q Li, L G Qiu, T Xu, Y Wu, W Wang, Z Y Wu, X Jiang. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters, 2009, 63(1): 78–80
https://doi.org/10.1016/j.matlet.2008.09.010
8 T Dewa, T Saiki, Y Aoyama. Enolization and aldol reactions of ketone with a La3+-immobilized organic solid in water. A microporous enolase mimic. Journal of the American Chemical Society, 2001, 123(3): 502–503
https://doi.org/10.1021/ja001140b
9 S Neogi, M K Sharma, P K Bharadwaj. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A Chemical, 2009, 299(1–2): 1–4
https://doi.org/10.1016/j.molcata.2008.10.008
10 J Gascon, U Aktay, M D Hernandez-Alonso, G P M van Klink, F Kapteijn. Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 2009, 261(1): 75–87
https://doi.org/10.1016/j.jcat.2008.11.010
11 Z T Yu, Z L Liao, Y S Jiang, G H Li, G D Li, J S Chen. Construction of a microporous inorganic-organic hybrid compound with uranyl units. Chemical Communications, 2004, (16): 1814–1815
https://doi.org/10.1039/B406019A
12 P Mahata, G Madras, S Natarajan. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. Journal of Physical Chemistry B, 2006, 110(28): 13759–13768
https://doi.org/10.1021/jp0622381
13 J A R Navarro, E Barea, J M Salas, N Masciocchi, S Galli, A Sironi, C O Ania, J B Parra. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. Inorganic Chemistry, 2006, 45(6): 2397–2399
https://doi.org/10.1021/ic060049r
14 F X Llabrés i Xamena, A Abad, A Corma, H Garcia. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 2007, 250(2): 294–298
https://doi.org/10.1016/j.jcat.2007.06.004
15 K Schlichte, T Kratzke, S Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 2004, 73(1–2): 81–88
https://doi.org/10.1016/j.micromeso.2003.12.027
16 K S Suslick, P Bhyrappa, J H Chou, M E Kosal, S Nakagaki, D W Smithenry, S R Wilson. Microporous porphyrin solids. Accounts of Chemical Research, 2005, 38(4): 283–291
https://doi.org/10.1021/ar040173j
17 A Dhakshinamoorthy, M Alvaro, H Garcia. Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 2009, 267(1): 1–4
https://doi.org/10.1016/j.jcat.2009.08.001
18 N T S Phan, K K A Le, T D Phan. MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions. Applied Catalysis A, General, 2010, 382(2): 246–253
https://doi.org/10.1016/j.apcata.2010.04.053
19 U Ravon, M E Domine, C Gaudillere, A Desmartin-Chomel, D Farrusseng. MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 2008, 32(6): 937–940
https://doi.org/10.1039/b803953b
20 M Opanasenko, A Dhakshinamoorthy, J Čejka, H Garcia. Deactivation pathways of the catalytic activity of metal-organic frameworks in condensation reactions. ChemCatChem, 2013, 5(6): 1553–1561
https://doi.org/10.1002/cctc.201200643
21 C Perego, P Ingallina. Recent advances in the industrial alkylation of aromatics: New catalysts and new processes. Catalysis Today, 2002, 73(1–2): 3–22
https://doi.org/10.1016/S0920-5861(01)00511-9
22 L T L Nguyen, C V Nguyen, G H Dang, K K A Le, N T S Phan. Towards applications of metal-organic frameworks in catalysis: Friedel-Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A Chemical, 2011, 349(1–2): 28–35
https://doi.org/10.1016/j.molcata.2011.08.011
23 G Calleja, R Sanz, G Orcajo, D Briones, P Leo, F Martínez. Copper-based MOF-74 material as effective acid catalyst in Friedel-Crafts acylation of anisole. Catalysis Today, 2014, 227: 130–137
https://doi.org/10.1016/j.cattod.2013.11.062
24 E Rahmani, M Rahmani. Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous and Mesoporous Materials, 2017, 249: 118–127
https://doi.org/10.1016/j.micromeso.2017.04.058
25 R V Tompson, S K Loyalka. Chapman-Enskog solution for diffusion: Pidduck’s equation for arbitrary mass ratio. Physics of Fluids, 1987, 30(7): 2073–2075
https://doi.org/10.1063/1.866142
26 S A Reinecke, B E Sleep. Knudsen diffusion, gas permeability, and water content in an unconsolidated porous medium. Water Resources Research, 2002, 38(12): 16-1–16-15
27 L Pisani. Simple Expression for the tortuosity of porous media. Transport in Porous Media, 2011, 88(2): 193–203
https://doi.org/10.1007/s11242-011-9734-9
28 E Rahmani, M Rahmani. Al-based MIL-53 metal organic framework (MOF) as the new catalyst for Friedel-Crafts alkylation of benzene. Industrial & Engineering Chemistry Research, 2018, 57(1): 169–178
https://doi.org/10.1021/acs.iecr.7b04206
29 A N Emana, S Chand. Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Applied Petrochemical Research, 2015, 5(2): 121–134
https://doi.org/10.1007/s13203-015-0100-7
30 P G Smirniotis, E Ruckenstein. Alkylation of benzene or toluene with MeOH or C2H4 over ZSM-5 or. beta. Zeolite: effect of the zeolite pore openings and of the hydrocarbons involved on the mechanism of alkylation. Industrial & Engineering Chemistry Research, 1995, 34(5): 1517–1528
https://doi.org/10.1021/ie00044a002
31 U Sridevi, B K Bhaskar Rao, N C Pradhan. Kinetics of alkylation of benzene with ethanol on AlCl3-impregnated 13X zeolites. Chemical Engineering Journal, 2001, 83(3): 185–189
https://doi.org/10.1016/S1385-8947(00)00253-9
32 A Dhakshinamoorthy, M Alvaro, H Chevreau, P Horcajada, T Devic, C Serre, H Garcia. Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science & Technology, 2012, 2(2): 324–330
https://doi.org/10.1039/C2CY00376G
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed