Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (2): 233-247   https://doi.org/10.1007/s11705-019-1893-1
  本期目录
Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling
Kasra Pirzadeh, Ali Asghar Ghoreyshi(), Mostafa Rahimnejad, Maedeh Mohammadi
Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
 全文: PDF(1194 KB)   HTML
Abstract

Cu3(BTC)2, a common type of metal organic framework (MOF), was synthesized through electrochemical route for CO2 capture and its separation from N2. Taguchi method was employed for optimization of key parameters affecting the synthesis of Cu3(BTC)2. The results indicated that the optimum synthesis conditions with the highest CO2 selectivity can be obtained using 1 g of ligand, applied voltage of 25 V, synthesis time of 2 h, and electrode length of 3 cm. The single gas sorption capacity of the synthetized microstructure Cu3(BTC)2 for CO2 (at 298 K and 1 bar) was a considerable value of 4.40 mmol·g−1. The isosteric heat of adsorption of both gases was calculated by inserting temperature-dependent form of Langmuir isotherm model in the Clausius-Clapeyron equation. The adsorption of CO2/N2 binary mixture with a concentration ratio of 15/85 vol-% was also studied experimentally and the result was in a good agreement with the predicted value of IAST method. Moreover, Cu3(BTC)2 showed no considerable loss in CO2 adsorption after six sequential cycles. In addition, artificial neural networks (ANNs) were also applied to predict the separation behavior of CO2/N2 mixture by MOFs and the results revealed that ANNs could serve as an appropriate tool to predict the adsorptive selectivity of the binary gas mixture in the absence of experimental data.

Key wordsCu3(BTC)2 electrochemical synthesis    CO2 adsorption    Taguchi optimization    ANN modeling
收稿日期: 2019-04-28      出版日期: 2020-03-24
Corresponding Author(s): Ali Asghar Ghoreyshi   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 233-247.
Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1893-1
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I2/233
Fig.1  
Controlling factors Variables Levels
1 2 3 4
Ligand /g L 0.6 0.8 1 1.2
Voltage /V V 20 25 30 35
Time /h T 1 1.5 2 2.5
Electrode length /cm E 1.5 2 2.5 3
Tab.1  
Fig.2  
Set No. MOF structure BET
/(m2·g–1)
Pore vol. /(m3·g–1) CO2 heat of adsorption
/(kJ·mol–1)
N2 heat of adsorption
/(kJ·mol–1)
Ads. Temp.
/K
Ads. Press.
/bar
15:85
CO2/N2
selectivity
Ref.
1 Q-MOF-1 140 0.07 15.3 10.5 298 1 17.2 [43]
2 Q-MOF-1 140 0.07 15.3 10.5 273 1 18.7 [43]
3 ZnDABCO 1863 0.67 19 14 294 1 9.3 [44]
4 NiDABCO 1904 0.98 19 17 294 1 7.2 [45]
5 CuDABCO 1415 0.72 19 13 294 1 7.2 [45]
6 MFM-300(Ga) 1175.77 0.39 40.03 17.37 298 1 100 [46]
7 MFM-300(Al) 1340.69 0.44 42.49 18.49 298 1 105 [46]
8 MFM-300(In-3N) 1174.54 0.39 35.92 15.71 298 1 50 [46]
9 mmen-CuBTTri 870 0.363 96 15 318 1 123 [47]
10 ZIF-8 1025 0.54 26 12.5 298 0.1 21 [48]
11 ZIF-8 1025 0.54 26 12.5 298 0.5 15 [48]
12 ZIF-8 1025 0.54 26 12.5 298 1 12 [48]
13 ZIF-8 1025 0.54 26 12.5 298 5 8 [48]
14 ZIF-8 1025 0.54 26 12.5 298 10 6 [48]
15 ZIF-8 1025 0.54 26 12.5 298 15 5 [48]
16 ED-ZIF-8 1428 0.75 33 11.5 298 0.1 37 [48]
17 ED-ZIF-8 1428 0.75 33 11.5 298 0.5 20 [48]
18 ED-ZIF-8 1428 0.75 33 11.5 298 1 15 [48]
19 ED-ZIF-8 1428 0.75 33 11.5 298 5 8 [48]
20 ED-ZIF-8 1428 0.75 33 11.5 298 10 7 [48]
21 ED-ZIF-8 1428 0.75 33 11.5 298 15 6.5 [48]
22 Mg-DOBDC 1800 0.5727 42 18 313 1 19 [49]
23 Mg-DOBDC 1800 0.5727 42 18 333 1 16 [49]
24 Mg-DOBDC 1800 0.5727 42 18 353 1 11 [49]
25 MIL-101 powder 2471 1.2 38.81 19.66 288 1 12.26 [50]
26 MIL-101 powder 2471 1.2 38.81 19.66 303 1 12.61 [50]
27 MIL-101 powder 2471 1.2 38.81 19.66 313 1 21.25 [50]
28 MIL-101 granular 1642 0.83 39.08 15.8 288 1 10.83 [50]
29 MIL-101 granular 1642 0.83 39.08 15.8 303 1 12 [50]
30 MIL-101 granular 1642 0.83 39.08 15.8 313 1 11.64 [50]
31 UIO-66 1105 0.55 24.8 12.8 298 0.5 30 [51]
32 UIO-66 1105 0.55 24.8 12.8 298 1 28 [51]
33 UIO-66 1105 0.55 24.8 12.8 298 1.5 27 [51]
34 UIO-66 1105 0.55 24.8 12.8 298 2 27 [51]
35 UIO-66 1105 0.55 24.8 12.8 298 2.5 27 [51]
36 UIO-66 1105 0.55 24.8 12.8 298 3 27 [51]
37 UIO-NH2 1123 0.52 28 16.2 298 0.5 58 [51]
38 UIO-NH2 1123 0.52 28 16.2 298 1 59 [51]
39 UIO-NH2 1123 0.52 28 16.2 298 1.5 60 [51]
40 UIO-NH2 1123 0.52 28 16.2 298 2 63 [51]
41 UIO-NH2 1123 0.52 28 16.2 298 2.5 65 [51]
42 UIO-NH2 1123 0.52 28 16.2 298 3 69 [51]
43 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 0.5 30 [51]
44 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 1 32 [51]
45 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 1.5 33 [51]
46 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 2 33 [51]
47 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 2.5 33 [51]
48 UIO-66 (Naphtyl) 757 0.42 26 16.6 298 3 33 [51]
49 UIO-66 (NO2) 792 0.4 32 16 298 0.5 39 [51]
50 UIO-66 (NO2) 792 0.4 32 16 298 1 38 [51]
51 UIO-66 (NO2) 792 0.4 32 16 298 1.5 38 [51]
52 UIO-66 (NO2) 792 0.4 32 16 298 2 39 [51]
53 UIO-66 (NO22) 792 0.4 32 16 298 2.5 39 [51]
54 UIO-66 (NO2) 792 0.4 32 16 298 3 40 [51]
55 UIO-66 (Ome) 868 0.38 31.8 18.2 298 0.5 50 [51]
56 UIO-66 (Ome) 868 0.38 31.8 18.2 298 1 52 [51]
57 UIO-66 (Ome) 868 0.38 31.8 18.2 298 1.5 55 [51]
58 UIO-66 (Ome) 868 0.38 31.8 18.2 298 2 60 [51]
59 UIO-66 (Ome) 868 0.38 31.8 18.2 298 2.5 65 [51]
60 UIO-66 (Ome) 868 0.38 31.8 18.2 298 3 69 [51]
Tab.2  
No. Controlling factors Mean of CO2/N2 selectivity S/N ratios
Ligand /g Voltage /V Time /h Electrode /cm
1 0.6 20 1 1.5 29.96 29.53
2 0.6 25 1.5 2 29.31 29.34
3 0.6 30 2 2.5 28.68 29.09
4 0.6 35 2.5 3 28.48 28.90
5 0.8 20 1.5 2.5 32.21 30.15
6 0.8 25 1 3 31.86 30.06
7 0.8 30 2.5 1.5 28.11 28.97
8 0.8 35 2 2 28.05 28.95
9 1 20 2 3 31.12 29.86
10 1 25 2.5 2.5 31.37 30.20
11 1 30 1 2 30 29.54
12 1 35 1.5 1.5 27.52 28.79
13 1.2 20 2.5 2 31.79 29.76
14 1.2 25 2 1.5 31 29.82
15 1.2 30 1.5 3 31.97 30.04
16 1.2 35 1 2.5 29.85 29.49
Tab.3  
Level Ligand Voltage Time Electrode
1 28.13 29.62 28.71 29.27
2 29.21 29.85 29.58 26.39
3 29.83 29.41 29.65 29.51
4 28.66 27.08 27.75 29.73
Delta 1.70 2.77 1.90 3.34
Tab.4  
Source DoF Adj. SS Adj. MS F-value
Ligand 3 55.31 18.43 0.84
Voltage 3 143.54 47.84 2.18
Time 3 112.11 37.37 1.71
Electrode 3 265.81 88.60 4.07
Error 3 65.67 21.89
Total 15 642.44
Tab.5  
Fig.3  
Fig.4  
Sample SBET /(m2·g–1) Total pore volume /(cm3·g–1) Micropore volume
/(cm3·g–1)
Mean pore diameter
/nm
Opt-Cu3(BTC)2 1627.4 0.69 0.67 1.69
Cu3(BTC)2 1474.1 0.62 0.59 1.68
Tab.6  
Fig.5  
Fig.6  
Constants CO2 N2
q0 /(mmol·g–1) 10.8851 2.7209
δ/K–1 0.0004 0.0008
KL0 /(L·mmol–1) 3.15× 10 5 0.0053
Q /(kJ·mol–1) 34.1492 17.1850
Cost value 0.0161 0.0014
Tab.7  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
MOF SBET /(m2·g–1) Vt /(cm3·g–1) T /K P /bar Synthesis time /h CO2 uptake /(mmol·g–1) CO2/N2 selectivity Ref.
Cu3(BTC)2 1571 0.79 298 1 24 3.80 20 [63]
Cu3(BTC)2 1922 0.80 273 1 24 7.32 22 [64]
Cu3(BTC)2 1202 0.59 298 1 12 4.07 16.8 [65]
Cu3(BTC)2 1326 0.58 303 1 12 3.00 N/A [66]
Cu3(BTC)2 1306 0.65 298 1 14 3.20 N/A [40]
Cu3(BTC)2 1370 0.57 298 1 24 3.20 N/A [67]
Cu3(BTC)2 1627 0.69 298 1 2 4.40 31 This study
Tab.8  
Fig.11  
1 J T Houghton, Y Ding, D J Griggs, M Noguer, P J van der Linden, X Dai, K Maskell, C A Johnson. Climate Change 2001: The Scientific Basis. New York: The Press Syndicate of the University of Cambridge, 2001, 417–471
2 R Monastersky. Global carbon dioxide levels near worrisome milestone. Nature, 2013, 497(7447): 13–14
https://doi.org/10.1038/497013a
3 X Wu, M Liu, R Shi, X Yu, Y Liu. CO2 adsorption/regeneration kinetics and regeneration properties of amine functionalized SBA-16. Journal of Porous Materials, 2018, 25(4): 1219–1227
https://doi.org/10.1007/s10934-017-0532-9
4 E Mehrvarz, A A Ghoreyshi, M Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265
https://doi.org/10.1007/s11705-017-1630-6
5 D Aaron, C Tsouris. Separation of CO2 from flue gas: A review. Separation Science and Technology, 2005, 40(1-3): 321–348
https://doi.org/10.1081/SS-200042244
6 Y Belmabkhout, V Guillerm, M Eddaoudi. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chemical Engineering Journal, 2016, 296: 386–397
https://doi.org/10.1016/j.cej.2016.03.124
7 S Y Lee, S J Park. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23: 1–11
https://doi.org/10.1016/j.jiec.2014.09.001
8 D Andirova, C F Cogswell, Y Lei, S Choi. Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous and Mesoporous Materials, 2016, 219: 276–305
https://doi.org/10.1016/j.micromeso.2015.07.029
9 T Witoon, M Chareonpanich. Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Materials Letters, 2012, 81: 181–184
https://doi.org/10.1016/j.matlet.2012.04.126
10 Q Li, J Yang, D Feng, Z Wu, Q Wu, S S Park, C S Ha, D Zhao. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3(9): 632–642
https://doi.org/10.1007/s12274-010-0023-7
11 T Witoon. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics, 2012, 137(1): 235–245
https://doi.org/10.1016/j.matchemphys.2012.09.014
12 Y Liu, Z U Wang, H C Zhou. Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases. Science and Technology, 2012, 2(4): 239–259
13 J Liu, J Tian, P K Thallapally, B P McGrail. Selective CO2 capture from flue gas using metal-organic frameworks—a fixed bed study. Journal of Physical Chemistry C, 2012, 116(17): 9575–9581
https://doi.org/10.1021/jp300961j
14 A Martinez Joaristi, J Juan-Alcañiz, P Serra-Crespo, F Kapteijn, J Gascon. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012, 12(7): 3489–3498
https://doi.org/10.1021/cg300552w
15 H Wu, J M Simmons, Y Liu, C M Brown, X S Wang, S Ma, V K Peterson, P D Southon, C J Kepert, H C Zhou, T Yildirim, W Zhou. Metal-organic frameworks with exceptionally high methane uptake: Where and how is methane stored? Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(17): 5205–5214
https://doi.org/10.1002/chem.200902719
16 S Xiang, W Zhou, J M Gallegos, Y Liu, B Chen. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. Journal of the American Chemical Society, 2009, 131(34): 12415–12419
https://doi.org/10.1021/ja904782h
17 N Al-Janabi, A Alfutimie, F R Siperstein, X Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
https://doi.org/10.1007/s11705-015-1552-0
18 P D Dietzel, R E Johnsen, R Blom, H Fjellvåg. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(8): 2389–2397
https://doi.org/10.1002/chem.200701370
19 S R Caskey, A G Wong-Foy, A J Matzger. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
https://doi.org/10.1021/ja8036096
20 S Bordiga, L Regli, F Bonino, E Groppo, C Lamberti, B Xiao, P Wheatley, R Morris, A Zecchina. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007, 9(21): 2676–2685
https://doi.org/10.1039/b703643d
21 T R Van Assche, N Campagnol, T Muselle, H Terryn, J Fransaer, J F Denayer. On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 224: 302–310
https://doi.org/10.1016/j.micromeso.2015.11.060
22 U Mueller, M Schubert, F Teich, H Puetter, K Schierle-Arndt, J Pastre. Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 2006, 16(7): 626–636
https://doi.org/10.1039/B511962F
23 H Yang, H Du, L Zhang, Z Liang, W Li. Electrosynthesis and electrochemical mechanism of Zn-based Metal-organic Frameworks. International Journal of Electrochemical Science, 2015, 10: 1420–1433
24 R S Kumar, S S Kumar, M A Kulandainathan. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Microporous and Mesoporous Materials, 2013, 168: 57–64
https://doi.org/10.1016/j.micromeso.2012.09.028
25 R S Kumar, S S Kumar, M A Kulandainathan. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochemistry Communications, 2012, 25: 70–73
https://doi.org/10.1016/j.elecom.2012.09.018
26 A Kundu, B S Gupta, M Hashim, G Redzwan. Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 2015, 105: 420–427
https://doi.org/10.1016/j.jclepro.2014.06.093
27 S S A Syed-Hassan, M S M Zaini. Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design. Korean Journal of Chemical Engineering, 2016, 33(8): 2502–2512
https://doi.org/10.1007/s11814-016-0072-z
28 K Pirzadeh, A A Ghoreyshi, M Rahimnejad, M Mohammadi. Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean Journal of Chemical Engineering, 2018, 35(4): 974–983
https://doi.org/10.1007/s11814-017-0340-6
29 H Y Yen, C P Lin. Adsorption of Cd (II) from wastewater using spent coffee grounds by Taguchi optimization. Desalination and Water Treatment, 2016, 57(24): 11154–11161
https://doi.org/10.1080/19443994.2015.1042063
30 G Zolfaghari, A Esmaili-Sari, M Anbia, H Younesi, S Amirmahmoodi, A Ghafari-Nazari. Taguchi optimization approach for Pb (II) and Hg (II) removal from aqueous solutions using modified mesoporous carbon. Journal of Hazardous Materials, 2011, 192(3): 1046–1055
https://doi.org/10.1016/j.jhazmat.2011.06.006
31 R K Roy. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. New York: John Wiley & Sons, 2001, 1–531
32 A B Engin, Ö Özdemir, M Turan, A Z Turan. Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method. Journal of Hazardous Materials, 2008, 159(2): 348–353
https://doi.org/10.1016/j.jhazmat.2008.02.065
33 M Sadrzadeh, T Mohammadi. Sea water desalination using electrodialysis. Desalination, 2008, 221(1-3): 440–447
https://doi.org/10.1016/j.desal.2007.01.103
34 K Esfandiari, A R Mahdavi, A A Ghoreyshi, M Jahanshahi. Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@CuBTC composite for enhanced hydrogen uptake. International Journal of Hydrogen Energy, 2018, 43(13): 6654–6665
https://doi.org/10.1016/j.ijhydene.2018.02.089
35 M S Phadke. Quality Engineering Using Robust Design. 1st ed. New Jersy: Prentice Hall PTR, 1995, 1–250
36 A Myers, J M Prausnitz. Thermodynamics of mixed-gas adsorption. AIChE Journal. American Institute of Chemical Engineers, 1965, 11(1): 121–127
https://doi.org/10.1002/aic.690110125
37 I N Daliakopoulos, P Coulibaly, I K Tsanis. Groundwater level forecasting using artificial neural networks. Journal of Hydrology (Amsterdam), 2005, 309(1-4): 229–240
https://doi.org/10.1016/j.jhydrol.2004.12.001
38 M W Gardner, S Dorling. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 1998, 32(14-15): 2627–2636
https://doi.org/10.1016/S1352-2310(97)00447-0
39 P Refaeilzadeh, L Tang, H Liu. Cross-validation. In: Liu L, Özsu M T, eds. Encyclopedia of Database Systems. Boston: Springer, 2009, 532–538
40 K Esfandiari, A A Ghoreyshi, M Jahanshahi. Using artificial neural network and ideal adsorbed solution theory for predicting the CO2/CH4 selectivities of metal-organic frameworks: A comparative study. Industrial & Engineering Chemistry Research, 2017, 56(49): 14610–14622
https://doi.org/10.1021/acs.iecr.7b03008
41 A S Lapedes, R M Farber. How neural nets work. In: Anderson D Z, ed. Neural Information Processing Systems. New York: AIP Press, 1988, 442–456
42 G Panchal, A Ganatra, Y Kosta, D Panchal. Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 2011, 3(2): 332–337
https://doi.org/10.7763/IJCTE.2011.V3.328
43 R G Lin, R B Lin, B Chen. A microporous metal-organic framework for selective C2H2 and CO2 separation. Journal of Solid State Chemistry, 2017, 252: 138–141
https://doi.org/10.1016/j.jssc.2017.05.013
44 P Mishra, S Mekala, F Dreisbach, B Mandal, S Gumma. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 2012, 94: 124–130
https://doi.org/10.1016/j.seppur.2011.09.041
45 P Mishra, S Edubilli, B Mandal, S Gumma. Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and Mesoporous Materials, 2013, 169: 75–80
https://doi.org/10.1016/j.micromeso.2012.10.025
46 Z Wu, S Wei, M Wang, S Zhou, J Wang, Z Wang, W Guo, X. LuCO2 capture and separation over N2 and CH4 in nanoporous MFM-300 (In, Al, Ga, and In-3N): insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28: 145–151
47 T M McDonald, D M D’Alessandro, R Krishna, J R Long. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chemical Science (Cambridge), 2011, 2(10): 2022–2028
https://doi.org/10.1039/c1sc00354b
48 Z Zhang, S Xian, Q Xia, H Wang, Z Li, J Li. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(6): 2195–2206
https://doi.org/10.1002/aic.13970
49 J A Mason, K Sumida, Z R Herm, R Krishna, J R Long. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science, 2011, 4(8): 3030–3040
https://doi.org/10.1039/c1ee01720a
50 K Munusamy, G Sethia, D V Patil, P B Somayajulu Rallapalli, R S Somani, H C Bajaj. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies. Chemical Engineering Journal, 2012, 195: 359–368
https://doi.org/10.1016/j.cej.2012.04.071
51 G E Cmarik, M Kim, S M Cohen, K S Walton. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012, 28(44): 15606–15613
https://doi.org/10.1021/la3035352
52 P Khare, A Kumar. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: Process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Applied Water Science, 2012, 2(4): 317–326
https://doi.org/10.1007/s13201-012-0047-0
53 R K Roy. A Primer on the Taguchi Method. 2nd ed. Michigan: Society of Manufacturing Engineers, 2010, 1–304
54 W Y Fowlkes, C M Creveling. Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development. 1st ed. Boston: Addison-Wesley Publishing Company, 1995, 1–403
55 A Aarti, S Bhadauria, A Nanoti, S Dasgupta, S Divekar, P Gupta, R Chauhan. [Cu3(BTC)2]-polyethyleneimine: An efficient MOF composite for effective CO2 separation. RSC Advances, 2016, 6(95): 93003–93009
https://doi.org/10.1039/C6RA10465G
56 B Sun, S Kayal, A Chakraborty. Study of HKUST (copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 2014, 76: 419–427
https://doi.org/10.1016/j.energy.2014.08.033
57 M Thommes, K Kaneko, A V Neimark, J P Olivier, F Rodriguez-Reinoso, J Rouquerol, K S Sing. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
https://doi.org/10.1515/pac-2014-1117
58 J Rouquerol, P Llewellyn, F Rouquerol. Is the BET equation applicable to microporous adsorbents. Studies in Surface Science and Catalysis, 2007, 160(7): 49–56
https://doi.org/10.1016/S0167-2991(07)80008-5
59 M R Armstrong, B Shan, Z Cheng, D Wang, J Liu, B Mu. Adsorption and diffusion of carbon dioxide on the metal-organic framework CuBTB. Chemical Engineering Science, 2017, 167: 10–17
https://doi.org/10.1016/j.ces.2017.03.049
60 D D Do. Adsorption Analysis: Equilibria and Kinetics: (With CD Containing Computer Matlab Programs). 1st ed. London: Imperial College Press, 1998, 1–916
61 J Keller, F Dreisbach, H Rave, R Staudt, M Tomalla. Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents. Adsorption, 1999, 5(3): 199–214
https://doi.org/10.1023/A:1008998117996
62 Q Yang, C Zhong, J F Chen. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
https://doi.org/10.1021/jp077387d
63 Z Liang, M Marshall, A L Chaffee. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy & Fuels, 2009, 23(5): 2785–2789
https://doi.org/10.1021/ef800938e
64 X Yan, S Komarneni, Z Zhang, Z Yan. Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014, 183: 69–73
https://doi.org/10.1016/j.micromeso.2013.09.009
65 Y Liu, P Ghimire, M Jaroniec. Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of Colloid and Interface Science, 2019, 535: 122–132
https://doi.org/10.1016/j.jcis.2018.09.086
66 S Ye, X Jiang, L W Ruan, B Liu, Y M Wang, J F Zhu, L G Qiu. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 2013, 179: 191–197
https://doi.org/10.1016/j.micromeso.2013.06.007
67 S Salehi, M Anbia. High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy & Fuels, 2017, 31(5): 5376–5384
https://doi.org/10.1021/acs.energyfuels.6b03347
[1] FCE-19045-OF-PK_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed