Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 350-364   https://doi.org/10.1007/s11705-019-1894-0
  本期目录
A review on emulsification via microfluidic processes
Yichen Liu1, Yongli Li1,2(), Andreas Hensel2, Juergen J. Brandner3, Kai Zhang1, Xiaoze Du1, Yongping Yang1
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), North China Electric Power University, Beijing 102206, China
2. Institute for Micro Process Engineering, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
3. Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
 全文: PDF(1083 KB)   HTML
Abstract

Emulsion is a disperse system with two immiscible liquids, which demonstrates wide applications in diverse industries. Emulsification technology has advanced well with the development of microfluidic process. Compared to conventional methods, the microfluidics-based process can produce controllable droplet size and distribution. The droplet formation or breakup is the result of combined effects resulting from interfacial tension, viscous, and inertial forces as well as the forces generated due to hydrodynamic pressure and external stimuli. In the current study, typical microfluidic systems, including microchannel array, T-shape, flow-focusing, co-flowing, and membrane systems, are reviewed and the corresponding mechanisms, flow regimes, and main parameters are compared and summarized.

Key wordsmicrofluidics    emulsification    capillary number    droplet breakup
收稿日期: 2019-05-04      出版日期: 2020-04-28
Corresponding Author(s): Yongli Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 350-364.
Yichen Liu, Yongli Li, Andreas Hensel, Juergen J. Brandner, Kai Zhang, Xiaoze Du, Yongping Yang. A review on emulsification via microfluidic processes. Front. Chem. Sci. Eng., 2020, 14(3): 350-364.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1894-0
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/350
Fig.1  
Fig.2  
Fig.3  
Group Case d
/µm
Lte
/µm
Wch
/µm
Lch
/µm
Lte/d Wch/d Lch/d Vcr
/(mm·s?1)
D
/µm
D/d
1 [45] 1a 2 15 3.3 7.7 7.5 1.7 3.9 2.2 7 3.5
1b 4 28 4.7 14 7.0 1.2 3.5 2.2 14 3.5
1c 8 57 8.3 32 7.1 1.0 4 2.2 32 4
1d 16 113 16 68 7.0 1.0 4.2 2.2 57 3.6
2 [43] 2a 7 39.3 11.6 53.1 5.6 1.6 7.6 1.6 25 3.6
2b 7 35.6 5.9 55.6 5.1 0.8 7.9 2.9 25 3.6
2c 7 38.4 11.3 136.1 5.5 1.6 19.4 2.3 25 3.6
3 [47] 3a 30 300 35 1400 10 1.1 47 158 100 3.3
3b 100 400 100 1500 4 1 15 36 300 3
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 C X Zhao. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 2013, 65(11-12): 1420–1446
https://doi.org/10.1016/j.addr.2013.05.009
2 R Ran, Q Sun, T Baby, D Wibowo, A P Middelberg, C X Zhao. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications. Chemical Engineering Science, 2017, 169: 78–96
https://doi.org/10.1016/j.ces.2017.01.008
3 M Maeki. Microfluidics for pharmaceutical applications. Microfluidics for Pharmaceutical Applications. Amsterdam: Elsevier, 2019, 101–119
4 K Muijlwijk, C Berton-Carabin, K Schroën. Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology, 2016, 49: 51–63
https://doi.org/10.1016/j.tifs.2016.01.004
5 D Z Gunes. Microfluidics for food science and engineering. Current Opinion in Food Science, 2018, 21: 57–65
https://doi.org/10.1016/j.cofs.2018.06.002
6 L Gilbert, C Picard, G Savary, M Grisel. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 421: 150–163
https://doi.org/10.1016/j.colsurfa.2013.01.003
7 A Ferreira, X Vecino, D Ferreira, J Cruz, A Moldes, L Rodrigues. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces. B, Biointerfaces, 2017, 155: 522–529
https://doi.org/10.1016/j.colsurfb.2017.04.026
8 R Preetika, P S Mehta, N S Kaisare, M G Basavaraj. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel, 2019, 236: 1415–1422
https://doi.org/10.1016/j.fuel.2018.09.074
9 G Sun, J Zhang, C Ma, X Wang. Start-up flow behavior of pipelines transporting waxy crude oil emulsion. Journal of Petroleum Science Engineering, 2016, 147: 746–755
https://doi.org/10.1016/j.petrol.2016.10.007
10 M Zhang, W Wang, R Xie, X Ju, Z Liu, L Jiang, Q Chen, L Chu. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology, 2016, 24: 18–31
https://doi.org/10.1016/j.partic.2015.08.001
11 A P Parker, P A Reynolds, A L Lewis, L Hughes. Semi-continuous emulsion co-polymerisation of methylmethacrylate and butylacrylate using zwitterionic surfactants as emulsifiers: Evidence of coagulative nucleation above the critical micelle concentration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 268(1): 162–174
https://doi.org/10.1016/j.colsurfa.2005.06.057
12 L Y Wang, G H Ma, Z G Su. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. Journal of Controlled Release, 2005, 106(1-2): 62–75
https://doi.org/10.1016/j.jconrel.2005.04.005
13 C H Choi, J H Jung, D W Kim, Y M Chung, C S Lee. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab on a Chip, 2008, 8(9): 1544
https://doi.org/10.1039/b804839h
14 R K Shah, J W Kim, J J Agresti, D A Weitz, L Y Chu. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4(12): 2303
https://doi.org/10.1039/b808653m
15 D Singh, R Sharma. Post harvest wax coating of kinnow fruits to retain quality during. Storage Agricultural Engineering Today, 2007, 31(2): 232–238
16 J C Cameron, C A Fischer, N C Lehman, J S Lindquist, C E Olson, S A Fox. Hot melt adhesive pellet comprising continuous coating of pelletizing aid. US Patent, 6120899, 2000-09-19
17 A S Kabal’Nov, A V Pertzov, E D Shchukin. Ostwald ripening in two-component disperse phase systems: Application to emulsion stability. Colloids and Surfaces, 1987, 24(1): 19–32
https://doi.org/10.1016/0166-6622(87)80258-5
18 J Bibette, T G Mason, H Gang, D A Weitz, P Poulin. Structure of adhesive emulsions. Langmuir, 1993, 9(12): 3352–3356
https://doi.org/10.1021/la00036a006
19 T G Mason. New fundamental concepts in emulsion rheology. Current Opinion in Colloid & Interface Science, 1999, 4(3): 231–238
https://doi.org/10.1016/S1359-0294(99)00035-7
20 C Tiwary, S Kishore, R Vasireddi, D Mahapatra, P Ajayan, K Chattopadhyay. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Materials Today, 2017, 20(2): 67–73
https://doi.org/10.1016/j.mattod.2017.01.015
21 C Fernández-Ávila, R Escriu, A Trujillo. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International, 2015, 75: 357–366
https://doi.org/10.1016/j.foodres.2015.05.026
22 L A Trujillo-Cayado, M C Alfaro, M García, J Muñoz. Comparison of homogenization processes for the development of green O/W emulsions formulated with N, N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46: 54–61
https://doi.org/10.1016/j.jiec.2016.10.015
23 D J McClements. Food Emulsions: Principles, Practices, and Techniques. 3rd ed. Florida: CRC Press, 2015, 245–288
24 T M Squires, S R Quake. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005, 77(3): 977–1026
https://doi.org/10.1103/RevModPhys.77.977
25 R Geczy, M Agnoletti, M F Hansen, J P Kutter, K Saatchi, U O Häfeli. Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. Journal of Magnetism and Magnetic Materials, 2019, 471: 286–293
https://doi.org/10.1016/j.jmmm.2018.09.091
26 Y Li, M Wengerter, I Gerken, H Nieder, S Scholl, J J Brandner. Development of an efficient emulsification process using miniaturized process engineering equipment. Chemical Engineering Research & Design, 2016, 108: 23–29
https://doi.org/10.1016/j.cherd.2015.11.002
27 Y Li, I Gerken, A Hensel, M Kraut, J J Brandner. Development of a continuous emulsification process for a highly viscous dispersed phase using microstructured devices. Green Processing and Synthesis, 2013, 2(5): 499–507
https://doi.org/10.1515/gps-2013-0063
28 H Wennerstrom, J Balogh, U Olsson. Interfacial tensions in microemulsions. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2006, 291(1-3): 69–77
29 J Diez, R Gratton, L Thomas, B Marino. Laplace pressure-driven drop spreading: Quasi-self-similar solution. Journal of Colloid and Interface Science, 1994, 168(1): 15–20
https://doi.org/10.1006/jcis.1994.1388
30 J Lyklema. Fundamentals of Interface and Colloid Science. 1st ed. Amsterdam: Elsevier, 2005, 1.1–1.1.6
31 P J A Kenis, R F Ismagilov, G M Whitesides. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999, 285(5424): 83–85
https://doi.org/10.1126/science.285.5424.83
32 H A Stone. Dynamics of drop deformation and breakup in viscous fluids. Annual Review of Fluid Mechanics, 1994, 26(1): 65–102
https://doi.org/10.1146/annurev.fl.26.010194.000433
33 W E Stewart Jr, C L G Dona. Low Rayleigh number flow in a heat generating porous media. International Communications in Heat and Mass Transfer, 1986, 13(3): 281–294
https://doi.org/10.1016/0735-1933(86)90016-3
34 T Tadros, P Izquierdo, J Esquena, C Solans. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108-109: 303–318
https://doi.org/10.1016/j.cis.2003.10.023
35 T Kawakatsu, Y Kikuchi, M Nakajima. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. Journal of the American Oil Chemists’ Society, 1997, 74(3): 317–321
https://doi.org/10.1007/s11746-997-0143-8
36 T Kawakatsu, H Komori, M Nakajima, Y Kikuchi, T Yonemoto. Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. Journal of Chemical Engineering of Japan, 1999, 32(2): 241–244
https://doi.org/10.1252/jcej.32.241
37 I Kobayashi, T Takano, R Maeda, Y Wada, K Uemura, M Nakajima. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluidics and Nanofluidics, 2008, 4(3): 167–177
https://doi.org/10.1007/s10404-007-0167-2
38 I Kobayashi, K Uemura, M Nakajima. CFD analysis of generation of soybean oil-in-water emulsion droplets using rectangular straight-through microchannels. Food Science and Technology Research, 2007, 13(3): 187–192
https://doi.org/10.3136/fstr.13.187
39 I Kobayashi, S Mukataka, M Nakajima. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. Journal of Colloid and Interface Science, 2004, 279(1): 277–280
https://doi.org/10.1016/j.jcis.2004.06.028
40 I Kobayashi, M Nakajima, H Nabetani, Y Kikuchi, A Shohno, K Satoh. Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. Journal of the American Oil Chemists’ Society, 2001, 78(8): 797–802
https://doi.org/10.1007/s11746-001-0345-5
41 I Kobayashi, M Nakajima, K Chun, Y Kikuchi, H Fukita. Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(8): 1639–1644
https://doi.org/10.1002/aic.690480807
42 S Sugiura, M Nakajima, J H Tong, H Nabetani, M Seki. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103
https://doi.org/10.1006/jcis.2000.6843
43 S Sugiura, M Nakajima, M Seki. Effect of channel structure on microchannel emulsification. Langmuir, 2002, 18(15): 5708–5712
https://doi.org/10.1021/la025813a
44 S Sugiura, M Nakajima, S Iwamoto, M Seki. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir, 2001, 17(18): 5562–5566
https://doi.org/10.1021/la010342y
45 S Sugiura, M Nakajima, N Kumazawa, S Iwamoto, M Seki. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. Journal of Physical Chemistry B, 2002, 106(36): 9405–9409
https://doi.org/10.1021/jp0259871
46 S Sugiura, M Nakajima, M Seki. Preparation of monodispersed emulsion with large droplets using microchannel emulsification. Journal of the American Oil Chemists’ Society, 2002, 79(5): 515–519
https://doi.org/10.1007/s11746-002-0517-6
47 W Treesuwan, M A Neves, K Uemura, M Nakajima, I Kobayashi. Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT, 2017, 84: 617–625
https://doi.org/10.1016/j.lwt.2017.06.014
48 M De Menech, P Garstecki, F Jousse, H A Stone. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161
https://doi.org/10.1017/S002211200700910X
49 S Okushima, T Nisisako, T Torii, T Higuchi. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905–9908
https://doi.org/10.1021/la0480336
50 Q Y Xu, M Nakajima. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Applied Physics Letters, 2004, 85(17): 3726–3728
https://doi.org/10.1063/1.1812380
51 J H Xu, S W Li, J Tan, Y J Wang, G S Luo. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir, 2006, 22(19): 7943–7946
https://doi.org/10.1021/la0605743
52 A E M Mora, A L F de Lima e Silva, S M M de Lima e Silva. Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM. Chemical Engineering Science, 2019, 196: 514–526
https://doi.org/10.1016/j.ces.2018.11.020
53 T Thorsen, R W Roberts, F H Arnold, S R Quake. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166
https://doi.org/10.1103/PhysRevLett.86.4163
54 B Zheng, R F Ismagilov. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie International Edition, 2005, 44(17): 2520–2523
https://doi.org/10.1002/anie.200462857
55 A Günther, S A Khan, M Thalmann, F Trachsel, K F Jensen. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 2004, 4(4): 278–286
https://doi.org/10.1039/B403982C
56 F Sabri, A A Lakis. Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression. Aerospace Science and Technology, 2011, 15(4): 237–248
https://doi.org/10.1016/j.ast.2010.07.003
57 J H Xu, S W Li, J Tan, Y J Wang, G S Luo. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE Journal. American Institute of Chemical Engineers, 2006, 52(9): 3005–3010
https://doi.org/10.1002/aic.10924
58 P Garstecki, M J Fuerstman, H A Stone, G M Whitesides. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006, 6(3): 437–446
https://doi.org/10.1039/b510841a
59 C X Zhao, A P J Middelberg. Two-phase microfluidic flows. Chemical Engineering Science, 2011, 66(7): 1394–1411
https://doi.org/10.1016/j.ces.2010.08.038
60 H A Stone, A D Stroock, A Ajdari. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36(1): 381–411
https://doi.org/10.1146/annurev.fluid.36.050802.122124
61 M Oishi, H Kinoshita, T Fujii, M Oshima. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. Journal of Physics: Conference Series, 2009, 147: 012061
https://doi.org/10.1088/1742-6596/147/1/012061
62 M De Menech, P Garstecki, F Jousse, H Stone. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161
https://doi.org/10.1017/S002211200700910X
63 S Van der Graaf, M Steegmans, R Van Der Sman, C Schroën, R Boom. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 266(1-3): 106–116
https://doi.org/10.1016/j.colsurfa.2005.06.019
64 M Oishi, H Kinoshita, M Oshima, T Fujii. Investigation of micro droplet formation in a T-shaped junction using multicolor confocal micro PIV. In: Proceedings of MNHT2008. ASME, 2008, 297–301
65 X B Li, F C Li, J C Yang, H Kinoshita, M Oishi, M Oshima. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 2012, 69(1): 340–351
https://doi.org/10.1016/j.ces.2011.10.048
66 R Seemann, M Brinkmann, T Pfohl, S Herminghaus. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601
https://doi.org/10.1088/0034-4885/75/1/016601
67 L Rayleigh. On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879, 29(196-199): 71–97
https://doi.org/10.1098/rspl.1879.0015
68 J H Xu, G S Luo, S W Li, G G Chen. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006, 6(1): 131–136
https://doi.org/10.1039/B509939K
69 S Lignel, A V Salsac, A Drelich, E Leclerc, I Pezron. Water-in-oil droplet formation in a flow-focusing microsystem using pressure-and flow rate-driven pumps. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 531: 164–172
https://doi.org/10.1016/j.colsurfa.2017.07.065
70 B D Hamlington, B Steinhaus, J J Feng, D Link, M J Shelley, A Q Shen. Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34(7): 861–870
https://doi.org/10.1080/02678290601171485
71 L Yobas, S Martens, W L Ong, N Ranganathan. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab on a Chip, 2006, 6(8): 1073–1079
https://doi.org/10.1039/b602240e
72 B U Moon, N Abbasi, S G Jones, D K Hwang, S S Tsai. Water-in-water droplets by passive microfluidic flow focusing. Analytical Chemistry, 2016, 88(7): 3982–3989
https://doi.org/10.1021/acs.analchem.6b00225
73 S L Anna, N Bontoux, H A Stone. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003, 82(3): 364–366
https://doi.org/10.1063/1.1537519
74 S L Anna, H C Mayer. Microscale tipstreaming in a microfluidic flow focusing device. Physics of Fluids, 2006, 18(12): 121512
https://doi.org/10.1063/1.2397023
75 W Lee, L M Walker, S L Anna. Impact of viscosity ratio on the dynamics of droplet breakup in a microfluidic flow focusing device. In: Co A, Leal L G, Colby R H, Giacomin A J, eds. XVth International Congress on Rheology—the Society of Rheology 80th Annual Meeting. American Institute of Physics, 2008, 994–996
76 W Lee, L M Walker, S L Anna. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, 21(3): 032103
https://doi.org/10.1063/1.3081407
77 S L Anna. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016, 48(1): 285–309
https://doi.org/10.1146/annurev-fluid-122414-034425
78 P Garstecki, H A Stone, G M Whitesides. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 2005, 94(16): 164501
https://doi.org/10.1103/PhysRevLett.94.164501
79 C Zhou, P Yue, J J Feng. Formation of simple and compound drops in microfluidic devices. Physics of Fluids, 2006, 18(9): 092105
https://doi.org/10.1063/1.2353116
80 G F Christopher, S L Anna. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007, 40(19): R319–R336
81 J K Nunes, S S H Tsai, J Wan, H A Stone. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied Physics, 2013, 46(11): 114002–114020
https://doi.org/10.1088/0022-3727/46/11/114002
82 T Fu, Y Wu, Y Ma, H Z Li. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84: 207–217
https://doi.org/10.1016/j.ces.2012.08.039
83 P Wu, Z Luo, Z Liu, Z Li, C Chen, L Feng, L He. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2015, 23(1): 7–14
https://doi.org/10.1016/j.cjche.2014.09.043
84 A S Utada, E Lorenceau, D R Link, P D Kaplan, H A Stone, D A Weitz. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537–541
https://doi.org/10.1126/science.1109164
85 A S Utada, A Fernandez-Nieves, H A Stone, D A Weitz. Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters, 2007, 99(9): 094502
https://doi.org/10.1103/PhysRevLett.99.094502
86 A M Gañán-Calvo. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing. Journal of Fluid Mechanics, 2006, 553: 75–84
https://doi.org/10.1017/S0022112006009013
87 C Deng, H Wang, W Huang, S Cheng. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1–8
https://doi.org/10.1016/j.colsurfa.2017.05.041
88 C Cramer, P Fischer, E J Windhab. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, 59(15): 3045–3058
https://doi.org/10.1016/j.ces.2004.04.006
89 R Suryo, O A Basaran. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Physics of Fluids, 2006, 18(8): 082102
https://doi.org/10.1063/1.2335621
90 E Villermaux, E Hopfinger. Periodically arranged co-flowing jets. Journal of Fluid Mechanics, 1994, 263: 63–92
https://doi.org/10.1017/S0022112094004039
91 L Wu, Y Chen. Visualization study of emulsion droplet formation in a coflowing microchannel. Chemical Engineering and Processing: Process Intensification, 2014, 85: 77–85
https://doi.org/10.1016/j.cep.2014.08.006
92 Y He, S Battat, J Fan, A Abbaspourrad, D A Weitz. Preparation of microparticles through co-flowing of partially miscible liquids. Chemical Engineering Journal, 2017, 320: 144–150
https://doi.org/10.1016/j.cej.2017.03.059
93 J Hua, B Zhang, J Lou. Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(10): 2534–2548
https://doi.org/10.1002/aic.11287
94 E Castro-hernández, V Gundabala, A Fernández-nieves, J M Gordillo. Scaling the drop size in coflow experiments. New Journal of Physics, 2009, 11(7): 075021
https://doi.org/10.1088/1367-2630/11/7/075021
95 G T Vladisavljevic, R A Williams. Manufacture of large uniform droplets using rotating membrane emulsification. Journal of Colloid and Interface Science, 2006, 299(1): 396–402
https://doi.org/10.1016/j.jcis.2006.01.061
96 S M Joscelyne, G Tragardh. Membrane emulsification—a literature review. Journal of Membrane Science, 2000, 169(1): 107–117
https://doi.org/10.1016/S0376-7388(99)00334-8
97 C Charcosset, I Limayem, H Fessi. The membrane emulsification process—a review. Journal of Chemical Technology & Biotechnology: International Research in Process. Environmental & Clean Technology, 2004, 79(3): 209–218
98 G De Luca, A Sindona, L Giorno, E Drioli. Quantitative analysis of coupling effects in cross-flow membrane emulsification. Journal of Membrane Science, 2004, 229(1-2): 199–209
https://doi.org/10.1016/j.memsci.2003.09.024
99 E Drioli, L Giorno. Membrane operations. Simulation, 2009, 1: 1
100 S Sharma, P Shukla, A Misra, P R Mishra. Chapter 8. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. In: Colloid & Interface Science in Pharmaceutical Research & Development. Amsterdam: Elsevier, 2014, 149–172
101 V Schroder, O Behrend, H Schubert. Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. Journal of Colloid and Interface Science, 1998, 202(2): 334–340
https://doi.org/10.1006/jcis.1998.5429
102 K Wang, Y C Lu, J H Xu, G S Luo. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir, 2009, 25(4): 2153–2158
https://doi.org/10.1021/la803049s
103 R Mozafarpour, A Koocheki, E Milani, M Varidi. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 2019, 93: 361–373
https://doi.org/10.1016/j.foodhyd.2019.02.036
104 K van Dijke, I Kobayashi, K Schroen, K Uemura, M Nakajima, R Boom. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9(1): 77–85
https://doi.org/10.1007/s10404-009-0521-7
105 N Wu, Y Zhu, P W Leech, B A Sexton, S Brown, C Easton. Effects of surfactants on the formation of microdroplets in the flow focusing microfluidic device. In:  Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE2007, 6799: U84–U91
106 P M Vlahovska, K D Danov, A Mehreteab, G Broze. Adsorption kinetics of ionic surfactants with detailed account for the electrostatic interactions. Journal of Colloid and Interface Science, 1997, 192(1): 194–206
https://doi.org/10.1006/jcis.1997.4919
107 M Sasaki, T Yasunaga, S Satake, M Ashida. Kinetic studies on double relaxation of surfactant solutions using a capillary wave method. Bulletin of the Chemical Society of Japan, 1977, 50(12): 3144–3148
https://doi.org/10.1246/bcsj.50.3144
108 A El-Abbassi, M A Neves, I Kobayashi, A Hafidi, M Nakajima. Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification. European Journal of Lipid Science and Technology, 2013, 115(2): 224–231
https://doi.org/10.1002/ejlt.201200085
109 C D Eggleton, T M Tsai, K J Stebe. Tip streaming from a drop in the presence of surfactants. Physical Review Letters, 2001, 87(4): 048302
https://doi.org/10.1103/PhysRevLett.87.048302
110 G Bracco, B Holst. Surface Science Techniques. 1st ed. Berlin: Springer, 2013, 3–34
111 S Hu, X Ren, M Bachman, C E Sims, G P Li, N L Allbritton. Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry, 2004, 76(7): 1865–1870 doi:10.1021/ac049937z
112 J L Barrat, L Bocquet. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 1999, 112: 119–127
https://doi.org/10.1039/a809733j
113 R Dreyfus, P Tabeling, H Willaime. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 2003, 90(14): 144505
https://doi.org/10.1103/PhysRevLett.90.144505
114 Z Nie, M Seo, S Xu, P C Lewis, M Mok, E Kumacheva, G M Whitesides, P Garstecki, H A Stone. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5(5): 585–594
https://doi.org/10.1007/s10404-008-0271-y
115 S Fournanty, Y L Guer, K E Omari, J P Dejean. Laminar flow emulsification process to control the viscosity reduction of heavy crude oils. Journal of Dispersion Science and Technology, 2008, 29(10): 1355–1366
https://doi.org/10.1080/01932690701782871
116 S Farokhirad, T Lee, J F Morris. Effects of inertia and viscosity on single droplet deformation in confined shear flow. Communications in Computational Physics, 2015, 13(3): 706–724
https://doi.org/10.4208/cicp.431011.260112s
117 R Eggers. Industrial High Pressure Applications, Processes, Equipment and Safety. 1st ed. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012, 97–122
118 J M Chwalek, D P Trauernicht, C N Delametter, R Sharma, D L Jeanmaire, C N Anagnostopoulos, G A Hawkins, B Ambravaneswaran, J C Panditaratne, O A Basaran. A new method for deflecting liquid microjets. Physics of Fluids, 2002, 14(6): L37–L40
https://doi.org/10.1063/1.1476675
119 J H Xu, S W Li, J Tan, G S Luo. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008, 5(6): 711–717
https://doi.org/10.1007/s10404-008-0306-4
120 Y Hong, F Wang. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics, 2007, 3(3): 341–346
https://doi.org/10.1007/s10404-006-0134-3
121 P Wright. The variation of viscosity with temperature. Physics Education, 1977, 12(5): 323–325
https://doi.org/10.1088/0031-9120/12/5/012
122 M Wengerter, Y Li, H Nieder, J J Brandner, M Schoenitz, S Scholl. Energy and resource efficient continuous production of a binder emulsion using microstructured devices. Chemical Engineering and Processing: Process Intensification, 2017, 122: 319–329
https://doi.org/10.1016/j.cep.2017.09.006
123 K B Fujiu, I Kobayashi, M A Neves, K Uemura, M Nakajima. Effect of temperature on production of soybean oil-in-water emulsions by microchannel emulsification using different emulsifiers. Food Science and Technology Research, 2011, 17(2): 77–86
https://doi.org/10.3136/fstr.17.77
124 R K Mahajan, J Chawla, M S Bakshi. Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid & Polymer Science, 2004, 282(10): 1165–1168
https://doi.org/10.1007/s00396-004-1050-2
125 K Shinoda, H Arai. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. Journal of Physical Chemistry, 1964, 68(12): 3485–3490
https://doi.org/10.1021/j100794a007
126 K Shinoda, H Saito. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. Journal of Colloid and Interface Science, 1969, 30(2): 258–263
https://doi.org/10.1016/S0021-9797(69)80012-3
127 C A Stan, S K Y Tang, G M Whitesides. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Analytical Chemistry, 2009, 81(6): 2399–2402
https://doi.org/10.1021/ac8026542
128 J D Tice, A D Lyon, R F Ismagilov. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 2004, 507(1): 73–77
https://doi.org/10.1016/j.aca.2003.11.024
129 N T Nguyen, T H Ting, Y F Yap, T N Wong, J C K Chai, W L Ong, J Zhou, S H Tan, L Yobas. Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91(8): 084102
https://doi.org/10.1063/1.2773948
130 Z Zhou, T Kong, H Mkaouar, K N Salama, J M Zhang. A hybrid modular microfluidic device for emulsion generation. Sensors and Actuators. A, Physical, 2018, 280: 422–428
https://doi.org/10.1016/j.sna.2018.08.005
131 T Kanai, M Tsuchiya. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chemical Engineering Journal, 2016, 290: 400–404
https://doi.org/10.1016/j.cej.2016.01.064
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed