Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 378-388   https://doi.org/10.1007/s11705-019-1913-1
  本期目录
Enhanced penetration strategies for transdermal delivery
Qiaofei Pan1, Yinglin Yu1, Dong Chen2, Genlong Jiao3(), Xiaowen Liu1()
1. Pharmacology, Department of Basic Medical Sciences, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
2. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
3. Department of Orthopaedics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
 全文: PDF(2683 KB)   HTML
Abstract

Transdermal delivery offers several advantages in drug distribution, including convenience, painless administration, avoidance of first-pass metabolism, and ease of termination. However, the natural protective barriers of the skin, such as the stratum corneum, the topmost layer of skin, limit the systemic absorption of external therapeutics via transdermal delivery. Therefore, extensive application of transdermal delivery in medical treatment has been limited. Over the past few years, many formulation strategies and physical technologies, therefore, have been developed to enhance transdermal delivery. This review summarizes various formulation strategies proposed for transdermal delivery and their application in medical treatment.

Key wordstransdermal delivery    stratum corneum    enhanced penetration    therapeutics
收稿日期: 2019-05-12      出版日期: 2020-04-28
Corresponding Author(s): Genlong Jiao,Xiaowen Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 378-388.
Qiaofei Pan, Yinglin Yu, Dong Chen, Genlong Jiao, Xiaowen Liu. Enhanced penetration strategies for transdermal delivery. Front. Chem. Sci. Eng., 2020, 14(3): 378-388.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1913-1
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/378
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 J F Jin, L L Zhu, H M Xu, H F Wang, X Q Feng, X P Zhu, Q Zhou. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Preference and Adherence, 2015, 9: 923–942
2 M Rowland. Influence of route of administration on drug availability. Journal of Pharmaceutical Sciences, 1972, 61(1): 70–74
https://doi.org/10.1002/jps.2600610111
3 D Duchěne, F Touchard, N Peppas. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Development and Industrial Pharmacy, 1988, 14(2-3): 283–318
https://doi.org/10.3109/03639048809151972
4 M R Prausnitz, R Langer. Transdermal drug delivery. Nature Biotechnology, 2008, 26(11): 1261–1268
https://doi.org/10.1038/nbt.1504
5 M R Prausnitz, S Mitragotri, R Langer. Current status and future potential of transdermal drug delivery. Nature Reviews. Drug Discovery, 2004, 3(2): 115–124
https://doi.org/10.1038/nrd1304
6 H Kalluri, A K Banga. Transdermal delivery of proteins. AAPS PharmSciTech, 2011, 12(1): 431–441
https://doi.org/10.1208/s12249-011-9601-6
7 P Carter, B Narasimhan, Q Wang. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics, 2019, 555: 49–62
https://doi.org/10.1016/j.ijpharm.2018.11.032
8 A Alkilani, M T McCrudden, R Donnelly. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4): 438–470
https://doi.org/10.3390/pharmaceutics7040438
9 Y Chen, Y Shen, X Guo, C Zhang, W Yang, M Ma, S Liu, M Zhang, L P Wen. Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology, 2006, 24(4): 455–460
https://doi.org/10.1038/nbt1193
10 L B Lopes, M T J Garcia, M V L Bentley. Chemical penetration enhancers. Therapeutic Delivery, 2015, 6(9): 1053–1061
https://doi.org/10.4155/tde.15.61
11 Y Chen, P Quan, X Liu, M Wang, L Fang. Novel chemical permeation enhancers for transdermal drug delivery. Asian Journal of Pharmaceutical Sciences, 2014, 9(2): 51–64
https://doi.org/10.1016/j.ajps.2014.01.001
12 Q D Pham, S Björklund, J Engblom, D Topgaard, E Sparr. Chemical penetration enhancers in stratum corneum—relation between molecular effects and barrier function. Journal of Controlled Release, 2016, 232: 175–187
https://doi.org/10.1016/j.jconrel.2016.04.030
13 C Tscheik, I E Blasig, L Winkler. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers, 2013, 1(2): e24565
https://doi.org/10.4161/tisb.24565
14 I B Pathan, C M Setty. Chemical penetration enhancers for transdermal drug delivery systems. Tropical Journal of Pharmaceutical Research, 2009, 8(2): 173–179
https://doi.org/10.4314/tjpr.v8i2.44527
15 P Karande, A Jain, K Ergun, V Kispersky, S Mitragotri. Design principles of chemical penetration enhancers for transdermal drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4688–4693
https://doi.org/10.1073/pnas.0501176102
16 T Haque, M M U Talukder. Chemical Enhancer: A simplistic way to modulate barrier function of the stratum corneum. Advanced Pharmaceutical Bulletin, 2018, 8(2): 169–179
https://doi.org/10.15171/apb.2018.021
17 S A Ibrahim, S K Li. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship. Pharmaceutical Research, 2010, 27(1): 115–125
https://doi.org/10.1007/s11095-009-9985-0
18 M E Lane. Skin penetration enhancers. International Journal of Pharmaceutics, 2013, 447(1-2): 12–21
https://doi.org/10.1016/j.ijpharm.2013.02.040
19 K Kandimalla, N Kanikkannan, S Andega, M Singh. Effect of Fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo. Journal of Pharmacy and Pharmacology, 1999, 51(7): 783–790
https://doi.org/10.1211/0022357991773140
20 B J J Aungst, N Rogers, E Shefter. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. International Journal of Pharmaceutics, 1986, 33(1): 225–234
https://doi.org/10.1016/0378-5173(86)90057-8
21 B J Aungst. Structure/Effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharmaceutical Research, 1989, 6(3): 244–247
https://doi.org/10.1023/A:1015921702258
22 B Ongpipattanakul, R R Burnette, R O Potts, M L Francoeur. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharmaceutical Research, 1991, 8(3): 350–354
https://doi.org/10.1023/A:1015845632280
23 R J Babu, L Chen, N Kanikkannan. Fatty alcohols, fatty acids, and fatty acid esters as penetration enhancers. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2015, 133–150
24 S Parivesh, D Sumeet, D Abhishek. Design, evaluation, parameters and marketed products of transdermal patches: A review. Journal of Pharmacy Research, 2010, 3(2): 235–240
25 W P Jordan Jr, L E Atkinson, C Lai. Comparison of the skin irritation potential of two testosterone transdermal systems: An investigational system and a marketed product. Clinical Therapeutics, 1998, 20(1): 80–87
https://doi.org/10.1016/S0149-2918(98)80036-2
26 A C Williams, B W Barry. Penetration enhancers. Advanced Drug Delivery Reviews, 2012, 64(Suppl): 128–137
https://doi.org/10.1016/j.addr.2012.09.032
27 P Liu, M Cettina, J Wong. Effects of isopropanol-isopropyl myristate binary enhancers on in vitro transport of estradiol in human epidermis: A mechanistic evaluation. Journal of Pharmaceutical Sciences, 2009, 98(2): 565–572
https://doi.org/10.1002/jps.21459
28 R M Watkinson, C Herkenne, R H Guy, J Hadgraft, G Oliveira, M E Lane. Influence of ethanol on the solubility, ionization and permeation characteristics of Ibuprofen in silicone and human skin. Skin Pharmacology and Physiology, 2009, 22(1): 15–21
https://doi.org/10.1159/000183922
29 C Wischke, S P Schwendeman. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008, 364(2): 298–327
https://doi.org/10.1016/j.ijpharm.2008.04.042
30 S Andega, N Kanikkannan, M Singh. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. Journal of Controlled Release, 2001, 77(1): 17–25
https://doi.org/10.1016/S0168-3659(01)00439-4
31 M Dias, A Naik, R H Guy, J Hadgraft, M E Lane. In vivo infrared spectroscopy studies of alkanol effects on human skin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 1171–1175
https://doi.org/10.1016/j.ejpb.2008.02.006
32 J Jampilek, K Brychtova. Azone analogues: Classification, design, and transdermal penetration principles. Medicinal Research Reviews, 2012, 32(5): 907–947
https://doi.org/10.1002/med.20227
33 J E Harrison, A C Watkinson, D M Green, J Hadgraft, K Brain. The relative effect of azone and transcutol on permeant diffusivity and solubility in human stratum corneum. Pharmaceutical Research, 1996, 13(4): 542–546
https://doi.org/10.1023/A:1016037803128
34 J E Harrison, P W Groundwater, K R Brain, J Hadgraft. Azone® induced fluidity in human stratum corneum. A fourier transform infrared spectroscopy investigation using the perdeuterated analogue. Journal of Controlled Release, 1996, 41(3): 283–290
https://doi.org/10.1016/0168-3659(96)01348-X
35 J Hadgraft. Passive enhancement strategies in topical and transdermal drug delivery. International Journal of Pharmaceutics, 1999, 184(1): 1–6
https://doi.org/10.1016/S0378-5173(99)00095-2
36 J Hadgraft, J Peck, D G Williams, W J Pugh, G Allan. Mechanisms of action of skin penetration enhancers/retarders: Azone and analogues. International Journal of Pharmaceutics, 1996, 141(1): 17–25
https://doi.org/10.1016/0378-5173(96)04609-1
37 L L Zou, J L Ma, T Wang, T B Yang, C B Liu. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Current Neuropharmacology, 2013, 11(2): 197–208
https://doi.org/10.2174/1570159X11311020006
38 S Stalmans, N Bracke, E Wynendaele, B Gevaert, K Peremans, C Burvenich, I Polis, B De Spiegeleer. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 2015, 10(10): e0139652
https://doi.org/10.1371/journal.pone.0139652
39 X Liu, P Zhang, W Rödl, K Maier, U Lächelt, E Wagner. Toward artificial immunotoxins: Traceless reversible conjugation of RNase A with receptor targeting and endosomal escape domains. Molecular Pharmaceutics, 2017, 14(5): 1439–1449
https://doi.org/10.1021/acs.molpharmaceut.6b00701
40 E Wagner, M Zenke, M Cotten, H Beug, M L Birnstiel. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(9): 3410–3414
https://doi.org/10.1073/pnas.87.9.3410
41 S R Schwarze, A Ho, A Vocero-Akbani, S F Dowdy. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572
https://doi.org/10.1126/science.285.5433.1569
42 A Erazo-Oliveras, K Najjar, L Dayani, T Y Wang, G A Johnson, J P Pellois. Protein delivery into live cells by incubation with an endosomolytic agent. Nature Methods, 2014, 11(8): 861–867
https://doi.org/10.1038/nmeth.2998
43 H Kamada, T Okamoto, M Kawamura, H Shibata, Y Abe, A Ohkawa, T Nomura, M Sato, Y Mukai, T Sugita, et al. Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biological & Pharmaceutical Bulletin, 2007, 30(2): 218–223
https://doi.org/10.1248/bpb.30.218
44 H Tang, L Yin, K H Kim, J Cheng. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science (Cambridge), 2013, 4(10): 3839–3844
https://doi.org/10.1039/c3sc51328a
45 M V Lozano, G Lollo, M Alonso-Nocelo, J Brea, A Vidal, D Torres, M J Alonso. Polyarginine nanocapsules: A new platform for intracellular drug delivery. Journal of Nanoparticle Research, 2013, 15(3): 1515
https://doi.org/10.1007/s11051-013-1515-7
46 J B Rothbard, S Garlington, Q Lin, T Kirschberg, E Kreider, P L McGrane, P A Wender, P A Khavari. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 2000, 6(11): 1253–1257
https://doi.org/10.1038/81359
47 Y C Kim, P J Ludovice, M R Prausnitz. Transdermal delivery enhanced by magainin pore-forming peptide. Journal of Controlled Release, 2007, 122(3): 375–383
https://doi.org/10.1016/j.jconrel.2007.05.031
48 E Jung, J Lee, J Park, D Park. Transdermal delivery of interferon-g (IFN-g) mediated by penetratin, a cell-permeable peptide. Biotechnology and Applied Biochemistry, 2005, 42(2): 169–173
https://doi.org/10.1042/BA20050003
49 T Hsu, S Mitragotri. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15816–15821
https://doi.org/10.1073/pnas.1016152108
50 C M Lin, K Huang, Y Zeng, X C Chen, S Wang, Y Li. A simple, noninvasive and efficient method for transdermal delivery of siRNA. Archives of Dermatological Research, 2012, 304(2): 139–144
https://doi.org/10.1007/s00403-011-1181-5
51 G Candan, H Michiue, S Ishikawa, A Fujimura, K Hayashi, A Uneda, A Mori, I Ohmori, T I Nishiki, H Matsui, K Tomizawa. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials, 2012, 33(27): 6468–6475
https://doi.org/10.1016/j.biomaterials.2012.04.056
52 A Gautam, J S Nanda, J S Samuel, M Kumari, P Priyanka, G Bedi, S K Nath, G Mittal, N Khatri, G P S Raghava. Topical delivery of protein and peptide esing novel cell penetrating peptide IMT-P8. Scientific Reports, 2016, 6(1): 26278
https://doi.org/10.1038/srep26278
53 T Zhang, H Qu, X Li, B Zhao, J Zhou, Q Li, M Sun. Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. Journal of Pharmaceutical Sciences, 2010, 99(12): 4880–4891
https://doi.org/10.1002/jps.22203
54 M Chang, X Li, Y Sun, F Cheng, Q Wang, X Xie, W Zhao, X Tian. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin. Molecular Pharmaceutics, 2013, 10(3): 951–957
https://doi.org/10.1021/mp300667p
55 G Cevc, G Blume. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2001, 1514(2): 191–205
https://doi.org/10.1016/S0005-2736(01)00369-8
56 G Cevc, A Schätzlein, G Blume. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. Journal of Controlled Release, 1995, 36(1): 3–16
https://doi.org/10.1016/0168-3659(95)00056-E
57 A H Al Shuwaili, B K A Rasool, A A Abdulrasool. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102: 101–114
https://doi.org/10.1016/j.ejpb.2016.02.013
58 H A Benson. Transfersomes for transdermal drug delivery. Expert Opinion on Drug Delivery, 2006, 3(6): 727–737
https://doi.org/10.1517/17425247.3.6.727
59 S Jain, P Jain, R Umamaheshwari, N Jain. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation. Drug Development and Industrial Pharmacy, 2003, 29(9): 1013–1026
https://doi.org/10.1081/DDC-120025458
60 G Cevc. Transdermal drug delivery of insulin with ultradeformable carriers. Clinical Pharmacokinetics, 2003, 42(5): 461–474
https://doi.org/10.2165/00003088-200342050-00004
61 S Rai, V Pandey, G Rai. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Reviews & Experiments, 2017, 8(1): 1325708
https://doi.org/10.1080/20022727.2017.1325708
62 J Wang, Y Wei, Y R Fei, L Fang, H S Zheng, C F Mu, F Z Li, Y S Zhang. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. International Journal of Pharmaceutics, 2017, 533(1): 266–274
https://doi.org/10.1016/j.ijpharm.2017.09.059
63 J Liu, W Li, H Teng, Z Lin. Immunopharmacological action of sinomenine, an alkaloid isolated from Sinomenium acutum, and its mechanism of action in treating rheumatoid arthritis. Acta Pharmaceutica Sinica, 2005, 40(2): 127–131 (in Chinese)
64 H Feng, K Yamaki, H Takano, K Inoue, R Yanagisawa, S Yoshino. Effect of sinomenine on collagen-induced arthritis in mice. Autoimmunity, 2007, 40(7): 532–539
https://doi.org/10.1080/08916930701615159
65 W Han, W Li, X Wang, H Zhang, Y Sun, B Hao. Preparation of sinomenine hydrochloride loaded nano flexible liposomes and their characteristics. Chinese Traditional and Herbal Drugs, 2011, 42(4): 671–675 (in Chinese)
66 A Ward, S P Clissold. Pentoxifylline. Drugs, 1987, 34(1): 50–97
https://doi.org/10.2165/00003495-198734010-00003
67 R V Smith, E S Waller, J T Doluisio, M T Bauza, S K Puri, I Ho, H B Lassman. Pharmacokinetics of orally administered pentoxifylline in humans. Journal of Pharmaceutical Sciences, 1986, 75(1): 47–52
https://doi.org/10.1002/jps.2600750111
68 A Rames, J M Poirier, F LeCoz, M Midavaine, B Lecocq, J D Grange, R Poupon, G Cheymol, P Jaillon. Pharmacokinetics of intravenous and oral pentoxifylline in healthy volunteers and in cirrhotic patients. Clinical Pharmacology and Therapeutics, 1990, 47(3): 354–359
https://doi.org/10.1038/clpt.1990.39
69 T Bryce, J Chamberlain, D Hillbeck, C Macdonald. Metabolism and pharmacokinetics of 14C-pentoxifylline in healthy volunteers. Arzneimittel-Forschung, 1989, 39(4): 512–517
70 T Jiang, T Wang, T Li, Y Ma, S Shen, B He, R Mo. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano, 2018, 12(10): 9693–9701
https://doi.org/10.1021/acsnano.8b03800
71 A D Bangham, R Horne. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology, 1964, 8(5): 660–668
https://doi.org/10.1016/S0022-2836(64)80115-7
72 A L Petersen, A E Hansen, A Gabizon, T L Andresen. Liposome imaging agents in personalized medicine. Advanced Drug Delivery Reviews, 2012, 64(13): 1417–1435
https://doi.org/10.1016/j.addr.2012.09.003
73 P Zhang, D He, P M Klein, X Liu, R Röder, M Döblinger, E Wagner. Enhanced intracellular protein transduction by sequence defined tetra-oleoyl oligoaminoamides targeted for cancer therapy. Advanced Functional Materials, 2015, 25(42): 6627–6636
https://doi.org/10.1002/adfm.201503152
74 J O Eloy, M Claro de Souza, R Petrilli, J P A Barcellos, R J Lee, J M Marchetti. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces. B, Biointerfaces, 2014, 123: 345–363
https://doi.org/10.1016/j.colsurfb.2014.09.029
75 A D Duong, M A Collier, E M Bachelder, B E Wyslouzil, K M Ainslie. One step encapsulation of small molecule drugs in liposomes via electrospray-remote loading. Molecular Pharmaceutics, 2016, 13(1): 92–99
https://doi.org/10.1021/acs.molpharmaceut.5b00528
76 J Huwyler, D Wu, W M Pardridge. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 14164–14169
https://doi.org/10.1073/pnas.93.24.14164
77 G Gregoriadis, D E Neerunjun. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. European Journal of Biochemistry, 1974, 47(1): 179–185
https://doi.org/10.1111/j.1432-1033.1974.tb03681.x
78 M L Tan, P F Choong, C R Dass. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010, 31(1): 184–193
https://doi.org/10.1016/j.peptides.2009.10.002
79 B Chatin, M Mével, J Devallière, L Dallet, T Haudebourg, P Peuziat, T Colombani, M Berchel, O Lambert, A Edelman, B Pitard. Liposome-based formulation for intracellular delivery of functional proteins. Molecular Therapy. Nucleic Acids, 2015, 4: e244
https://doi.org/10.1038/mtna.2015.17
80 Y Rahimpour, H Hamishehkar. Liposomes in cosmeceutics. Expert Opinion on Drug Delivery, 2012, 9(4): 443–455
https://doi.org/10.1517/17425247.2012.666968
81 M Sacha, L Faucon, E Hamon, I Ly, E Haltner-Ukomadu. Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomedicine and Pharmacotherapy, 2019, 111: 785–790
https://doi.org/10.1016/j.biopha.2018.12.079
82 G Yang, H E Lee, S W Shin, S H Um, J D Lee, K B Kim, H C Kang, Y Y Cho, H S Lee, J Y Lee. Efficient transdermal delivery of DNA nanostructures alleviates atopic dermatitis symptoms in NC/Nga mice. Advanced Functional Materials, 2018, 28(40): 1801918
https://doi.org/10.1002/adfm.201801918
83 N Yamazaki, T Sugimoto, M Fukushima, R Teranishi, A Kotaka, C Shinde, T Kumei, Y Sumida, Y Munekata, K I Maruyama, et al. Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery. Polymer Chemistry, 2017, 8(9): 1507–1518
https://doi.org/10.1039/C6PY01754A
84 R F Donnelly, T R R Singh, A D Woolfson. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Delivery, 2010, 17(4): 187–207
https://doi.org/10.3109/10717541003667798
85 E Larrañeta, M T C McCrudden, A J Courtenay, R F Donnelly. Microneedles: A new frontier in nanomedicine delivery. Pharmaceutical Research, 2016, 33(5): 1055–1073
https://doi.org/10.1007/s11095-016-1885-5
86 X Liu, C Wang, Z Liu. Protein-engineered biomaterials for cancer theranostics. Advanced Healthcare Materials, 2018, 7(20): 1800913
https://doi.org/10.1002/adhm.201800913
87 Y Ye, J Yu, D Wen, A R Kahkoska, Z Gu. Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127: 106–118
https://doi.org/10.1016/j.addr.2018.01.015
88 T Waghule, G Singhvi, S K Dubey, M M Pandey, G Gupta, M Singh, K Dua. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine and Pharmacotherapy, 2019, 109: 1249–1258
https://doi.org/10.1016/j.biopha.2018.10.078
89 E Larrañeta, R E M Lutton, A D Woolfson, R F Donnelly. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering R Reports, 2016, 104: 1–32
https://doi.org/10.1016/j.mser.2016.03.001
90 K Moffatt, Y Wang, T R Raj Singh, R F Donnelly. Microneedles for enhanced transdermal and intraocular drug delivery. Current Opinion in Pharmacology, 2017, 36: 14–21
https://doi.org/10.1016/j.coph.2017.07.007
91 M G McGrath, A Vrdoljak, C O’Mahony, J C Oliveira, A C Moore, A M Crean. Determination of parameters for successful spray coating of silicon microneedle arrays. International Journal of Pharmaceutics, 2011, 415(1): 140–149
https://doi.org/10.1016/j.ijpharm.2011.05.064
92 A Vrdoljak, M G McGrath, J B Carey, S J Draper, A V S Hill, C O’Mahony, A M Crean, A C Moore. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. Journal of Controlled Release, 2012, 159(1): 34–42
https://doi.org/10.1016/j.jconrel.2011.12.026
93 H S Gill, M R Prausnitz. Coated microneedles for transdermal delivery. Journal of Controlled Release, 2007, 117(2): 227–237
https://doi.org/10.1016/j.jconrel.2006.10.017
94 X Chen, H J Corbett, S R Yukiko, A P Raphael, E J Fairmaid, T W Prow, L E Brown, G J P Fernando, M A F Kendall. Site-selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin. Advanced Functional Materials, 2011, 21(3): 464–473
https://doi.org/10.1002/adfm.201000966
95 S H Baek, J H Shin, Y C Kim. Drug-coated microneedles for rapid and painless local anesthesia. Biomedical Microdevices, 2017, 19(1): 2
https://doi.org/10.1007/s10544-016-0144-1
96 R D Boehm, P R Miller, S L Hayes, N A Monteiro-Riviere, R J Narayan. Modification of microneedles using inkjet printing. AIP Advances, 2011, 1(2): 022139
https://doi.org/10.1063/1.3602461
97 G Yao, G Quan, S Lin, T Peng, Q Wang, H Ran, H Chen, Q Zhang, L Wang, X Pan, C Wu. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. International Journal of Pharmaceutics, 2017, 534(1-2): 378–386
https://doi.org/10.1016/j.ijpharm.2017.10.035
98 C Wang, Y Ye, G M Hochu, H Sadeghifar, Z Gu. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of Anti-PD1 antibody. Nano Letters, 2016, 16(4): 2334–2340
https://doi.org/10.1021/acs.nanolett.5b05030
99 A R Johnson, C L Caudill, J R Tumbleston, C J Bloomquist, K A Moga, A Ermoshkin, D Shirvanyants, S J Mecham, J C Luft, J M De Simone. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One, 2016, 11(9): e0162518
https://doi.org/10.1371/journal.pone.0162518
100 C L Caudill, J L Perry, S Tian, J C Luft, J M Desimone. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. Journal of Controlled Release, 2018, 284: 122–132
https://doi.org/10.1016/j.jconrel.2018.05.042
101 M C Chen, S F Huang, K Y Lai, M H Ling. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials, 2013, 34(12): 3077–3086
https://doi.org/10.1016/j.biomaterials.2012.12.041
102 M R Prausnitz, J A Mikszta, M Cormier, A K Andrianov. Microneedle-based Vaccines. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2009, 369–393
103 G Cheng, Z Davoudi, X Xing, X Yu, X Cheng, Z Li, H Deng, Q Wang. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomaterials Science & Engineering, 2018, 4(8): 2704–2715
https://doi.org/10.1021/acsbiomaterials.8b00150
104 Y Zhan, W Zeng, G Jiang, Q Wang, X Shi, Z Zhou, H Deng, Y Du. Construction of lysozyme exfoliated rectorite-based electrospun nanofibrous membranes for bacterial inhibition. Journal of Applied Polymer Science, 2015, 132(8): 41496
https://doi.org/10.1002/app.41496
105 S Xin, X Li, Q Wang, R Huang, X Xu, Z Lei, H Deng. Novel layer-by-layer structured nanofibrous mats coated by protein films for dermal regeneration. Journal of Biomedical Nanotechnology, 2014, 10(5): 803–810
https://doi.org/10.1166/jbn.2014.1748
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed