Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (2): 221-237   https://doi.org/10.1007/s11705-020-1927-8
  本期目录
Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review
Simin Feng1, Xiaoli Zhang2, Dunyun Shi3, Zheng Wang1()
1. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
2. Central Lab, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
3. Institute of Hematology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
 全文: PDF(1858 KB)   HTML
Abstract

Zeolitic imidazolate framework-8 (ZIF-8), composed of Zn ions and imidazolate ligands, is a class of metal-organic frameworks, which possesses a similar structure as conventional aluminosilicate zeolites. This material exhibits inherent porous property, high loading capacity, and pH-sensitive degradation, as well as exceptional thermal and chemical stability. Extensive research effort has been devoted to relevant research aspects ranging from synthesis methods, property characterization to potential applications of ZIF-8. This review focuses on the recent development of ZIF-8 synthesis methods and its promising applications in drug delivery. The potential risks of using ZIF-8 for drug delivery are also summarized.

Key wordszeolitic imidazolate framework-8 (ZIF-8)    synthesis methods    applications    drug delivery
收稿日期: 2019-12-04      出版日期: 2021-03-10
Corresponding Author(s): Zheng Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 221-237.
Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front. Chem. Sci. Eng., 2021, 15(2): 221-237.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1927-8
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I2/221
Fig.1  
Fig.2  
Fig.3  
ZIF Synthesis method Synthesis temperature/°C Synthesis time/h
ZIF-8 US 45 4, 6, 9
ST 140 24
ZIF-7 US 60 3
ZIF-11 US 60 6, 9, 12
ST 100 96
ZIF-20 US 45 3, 6, 9, 12
ST 65 72
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 A K Cheetham, C N Rao, R K Feller. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006, (46): 4780–4795
https://doi.org/10.1039/B610264F
2 J R Li, R J Kuppler, H C Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
3 G Ferey, C Mellot-Draznieks, C Serre, F Millange. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research, 2005, 38(4): 217–225
https://doi.org/10.1021/ar040163i
4 M O’Keeffe, M A Peskov, S J Ramsden, O M Yaghi. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
https://doi.org/10.1021/ar800124u
5 R Banerjee, A Phan, B Wang, C Knobler, H Furukawa, M O’Keeffe, O M Yaghi. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939–943
https://doi.org/10.1126/science.1152516
6 S A Moggach, T D Bennett, A K Cheetham. The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angewandte Chemie International Edition, 2009, 48(38): 7087–7089
https://doi.org/10.1002/anie.200902643
7 D Fairen-Jimenez, S A Moggach, M T Wharmby, P A Wright, S Parsons, T Duren. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 2011, 133(23): 8900–8902
https://doi.org/10.1021/ja202154j
8 F Wang, Y X Tan, H Yang, H X Zhang, Y Kang, J Zhang. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 2011, 47(20): 5828–5830
https://doi.org/10.1039/c1cc10829h
9 Y Li, F Liang, H Bux, W Yang, J Caro. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
https://doi.org/10.1016/j.memsci.2010.02.074
10 Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40
https://doi.org/10.1016/j.memsci.2010.02.023
11 M C McCarthy, V Varela-Guerrero, G V Barnett, H K Jeong. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
https://doi.org/10.1021/la102409e
12 H L Jiang, B Liu, T Akita, M Haruta, H Sakurai, Q Xu. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 2009, 131(32): 11302–11303
https://doi.org/10.1021/ja9047653
13 C Chizallet, S Lazare, D Bazer-Bachi, F Bonnier, V Lecocq, E Soyer, A A Quoineaud, N Bats. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 2010, 132(35): 12365–12377
https://doi.org/10.1021/ja103365s
14 H Wu, W Zhou, T Yildirim. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2007, 129(17): 5314–5315
https://doi.org/10.1021/ja0691932
15 L J Murray, M Dinca, J R Long. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
https://doi.org/10.1039/b802256a
16 S Ma, H C Zhou. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010, 46(1): 44–53
https://doi.org/10.1039/B916295J
17 B V Harbuzaru, A Corma, F Rey, J L Jorda, D Ananias, L D Carlos, J Rocha. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angewandte Chemie International Edition, 2009, 48(35): 6476–6479
https://doi.org/10.1002/anie.200902045
18 G Lu, J T Hupp. Metal-organic frameworks as sensors: A ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010, 132(23): 7832–7833
https://doi.org/10.1021/ja101415b
19 D Lu, Y An, S Feng, X Li, A Fan, Z Wang, Y Zhao. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS PharmSciTech, 2018, 19(6): 2610–2619
https://doi.org/10.1208/s12249-018-1092-2
20 X Li, M Gao, K Xin, L Zhang, D Ding, D Kong, Z Wang, Y Shi, F Kiessling, T Lammers, J Cheng, Y Zhao. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21
https://doi.org/10.1016/j.jconrel.2017.05.025
21 J Li, X Meng, J Deng, D Lu, X Zhang, Y Chen, J Zhu, A Fan, D Ding, D Kong, Z Wang, Y Zhao. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128
https://doi.org/10.1021/acsami.8b06299
22 X Meng, J Deng, F Liu, T Guo, M Liu, P Dai, A Fan, Z Wang, Y Zhao. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Letters, 2019, 19(11): 7866–7876
https://doi.org/10.1021/acs.nanolett.9b02904
23 K S Park, Z Ni, A P Cote, J Y Choi, R Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
https://doi.org/10.1073/pnas.0602439103
24 S Rohani, T Isimjan, A Mohamed, H Kazemian, M Salem, T Wang. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Frontiers of Chemical Science and Engineering, 2011, 6(1): 112–122
https://doi.org/10.1007/s11705-011-1144-6
25 K Kida, M Okita, K Fujita, S Tanaka, Y Miyake. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794
https://doi.org/10.1039/c2ce26847g
26 X C Huang, Y Y Lin, J P Zhang, X M Chen. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
https://doi.org/10.1002/anie.200503778
27 J P Zhang, A X Zhu, R B Lin, X L Qi, X M Chen. Pore surface tailored sod-type metal-organic zeolites. Advanced Materials, 2011, 23(10): 1268–1271
https://doi.org/10.1002/adma.201004028
28 A X Zhu, R B Lin, X L Qi, Y Liu, Y Y Lin, J P Zhang, X M Chen. Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157: 42–49
https://doi.org/10.1016/j.micromeso.2011.11.033
29 J Cravillon, S Münzer, S J Lohmeier, A Feldhoff, K Huber, M Wiebcke. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412
https://doi.org/10.1021/cm900166h
30 J Cravillon, R Nayuk, S Springer, A Feldhoff, K Huber, M Wiebcke. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141
https://doi.org/10.1021/cm103571y
31 J Cravillon, C A Schröder, H Bux, A Rothkirch, J Caro, M Wiebcke. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498
https://doi.org/10.1039/C1CE06002C
32 S K Nune, P K Thallapally, A Dohnalkova, C Wang, J Liu, G J Exarhos. Synthesis and properties of nano zeolitic imidazolate frameworks. Chemical Communications, 2010, 46(27): 4878–4880
https://doi.org/10.1039/c002088e
33 T D Bennett, P J Saines, D A Keen, J C Tan, A K Cheetham. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(22): 7049–7055
https://doi.org/10.1002/chem.201300216
34 M He, J Yao, L Li, K Wang, F Chen, H Wang. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. ChemPlusChem, 2013, 78(10): 1222–1225
https://doi.org/10.1002/cplu.201300193
35 K Shen, L Zhang, X Chen, L Liu, D Zhang, Y Han, J Chen, J Long, R Luque, Y Li, B Chen. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359(6372): 206–210
https://doi.org/10.1126/science.aao3403
36 L Hu, Z Yan, J Zhang, X Peng, X Mo, A Wang, L Chen. Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. Journal of Materials Science, 2019, 54(16): 11009–11023
https://doi.org/10.1007/s10853-019-03644-z
37 Y Chen, S Tang. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. Journal of Solid State Chemistry, 2019, 276: 68–74
https://doi.org/10.1016/j.jssc.2019.04.034
38 J Troyano, A Carne-Sanchez, C Avci, I Imaz, D Maspoch. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546
https://doi.org/10.1039/C9CS00472F
39 Y Pan, Y Liu, G Zeng, L Zhao, Z Lai. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071–2073
https://doi.org/10.1039/c0cc05002d
40 S Tanaka, K Kida, M Okita, Y Ito, Y Miyake. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41(10): 1337–1339
https://doi.org/10.1246/cl.2012.1337
41 A F Gross, E Sherman, J J Vajo. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions (Cambridge, England), 2012, 41(18): 5458–5460
https://doi.org/10.1039/c2dt30174a
42 J Yao, M He, K Wang, R Chen, Z Zhong, H Wang. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15(18): 3601
https://doi.org/10.1039/c3ce27093a
43 M He, J Yao, Q Liu, K Wang, F Chen, H Wang. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184: 55–60
https://doi.org/10.1016/j.micromeso.2013.10.003
44 B Seoane, J M Zamaro, C Tellez, J Coronas. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm, 2012, 14(9): 3103
https://doi.org/10.1039/c2ce06382d
45 H Y Cho, J Kim, S N Kim, W S Ahn. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184
https://doi.org/10.1016/j.micromeso.2012.11.012
46 K S Suslick, D A Hammerton, R E Cline. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642
https://doi.org/10.1021/ja00278a055
47 W J Son, J Kim, J Kim, W S Ahn. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, (47): 6336–6338
https://doi.org/10.1039/b814740j
48 M Schlesinger, S Schulze, M Hietschold, M Mehring. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous and Mesoporous Materials, 2010, 132(1-2): 121–127
https://doi.org/10.1016/j.micromeso.2010.02.008
49 J F Fernández-Bertrán, M P Hernández, E Reguera, H Yee-Madeira, J Rodriguez, A Paneque, J C Llopiz. Characterization of mechanochemically synthesized imidazolates of Ag+1, Zn+2, Cd+2, and Hg+2: Solid state reactivity of nd10 cations. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1612–1617
https://doi.org/10.1016/j.jpcs.2006.02.006
50 C J Adams, H M Colquhoun, P C Crawford, M Lusi, A G Orpen. Solid-state interconversions of coordination networks and hydrogen-bonded salts. Angewandte Chemie International Edition, 2007, 119(7): 1142–1146
https://doi.org/10.1002/ange.200603593
51 P J Beldon, L Fabian, R S Stein, A Thirumurugan, A K Cheetham, T Friscic. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie International Edition, 2010, 49(50): 9640–9643
https://doi.org/10.1002/anie.201005547
52 D Braga, M Curzi, A Johansson, M Polito, K Rubini, F Grepioni. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angewandte Chemie International Edition, 2006, 45(1): 142–146
https://doi.org/10.1002/anie.200502597
53 T Friscic, D G Reid, I Halasz, R S Stein, R E Dinnebier, M J Duer. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie International Edition, 2010, 49(4): 712–715
https://doi.org/10.1002/anie.200906583
54 S Tanaka, K Kida, T Nagaoka, T Ota, Y Miyake. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49(72): 7884–7886
https://doi.org/10.1039/c3cc43028f
55 S Cao, T D Bennett, D A Keen, A L Goodwin, A K Cheetham. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48(63): 7805–7807
https://doi.org/10.1039/c2cc33773h
56 D W Lewis, A R Ruiz-Salvador, A Gómez, L M Rodriguez-Albelo, F X Coudert, B Slater, A K Cheetham, C Mellot-Draznieks. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11(11): 2272
https://doi.org/10.1039/b912997a
57 J C Tan, A K Cheetham. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chemical Society Reviews, 2011, 40(2): 1059–1080
https://doi.org/10.1039/c0cs00163e
58 J C Tan, T D Bennett, A K Cheetham. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938–9943
https://doi.org/10.1073/pnas.1003205107
59 M J Cliffe, C Mottillo, R S Stein, D K Bučar, T Friščić. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chemical Science (Cambridge), 2012, 3(8): 2495
https://doi.org/10.1039/c2sc20344h
60 C Mottillo, Y Lu, M H Pham, M J Cliffe, T O Do, T Friščić. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15(8): 2121
https://doi.org/10.1039/c3gc40520f
61 J Lee, O K Farha, J Roberts, K A Scheidt, S T Nguyen, J T Hupp. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459
https://doi.org/10.1039/b807080f
62 D J Xiao, E D Bloch, J A Mason, W L Queen, M R Hudson, N Planas, J Borycz, A L Dzubak, P Verma, K Lee, F Bonino, V Crocellà, J Yano, S Bordiga, D G Truhlar, L Gagliardi, C M Brown, J R Long. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, 2014, 6(7): 590–595
https://doi.org/10.1038/nchem.1956
63 L T L Nguyen, K K A Le, H X Truong, N T S Phan. Metal-organic frameworks for catalysis: The knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology, 2012, 2(3): 521–528
https://doi.org/10.1039/C1CY00386K
64 U P N Tran, K K A Le, N T S Phan. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011, 1(2): 120–127
https://doi.org/10.1021/cs1000625
65 Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
https://doi.org/10.1007/s11705-016-1596-9
66 O K Farha, A O Yazaydin, I Eryazici, C D Malliakas, B G Hauser, M G Kanatzidis, S T Nguyen, R Q Snurr, J T Hupp. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
https://doi.org/10.1038/nchem.834
67 N L Rosi, J Eckert, M Eddaoudi, D T Vodak, J Kim, M O’Keeffe, O M Yaghi. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127–1129
https://doi.org/10.1126/science.1083440
68 S Yang, X Lin, W Lewis, M Suyetin, E Bichoutskaia, J E Parker, C C Tang, D R Allan, P J Rizkallah, P Hubberstey, N R Champness, K Mark Thomas, A J Blake, M Schröder. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 2012, 11(8): 710–716
https://doi.org/10.1038/nmat3343
69 N Al-Janabi, A Alfutimie, F R Siperstein, X Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
https://doi.org/10.1007/s11705-015-1552-0
70 Y Wang, C Li, F Meng, S Lv, J Guo, X Liu, C Wang, Z Ma. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345
https://doi.org/10.1007/s11705-014-1438-6
71 W Ma, Q Jiang, P Yu, L Yang, L Mao. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Analytical Chemistry, 2013, 85(15): 7550–7557
https://doi.org/10.1021/ac401576u
72 S Liu, Z Xiang, Z Hu, X Zheng, D Cao. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21(18): 6649
https://doi.org/10.1039/c1jm10166h
73 S Liu, L Wang, J Tian, Y Luo, G Chang, A M Asiri, A O Al-Youbi, X Sun. Application of zeolitic imidazolate framework-8 nanoparticles for the fluorescence-enhanced detection of nucleic acids. ChemPlusChem, 2012, 77(1): 23–26
https://doi.org/10.1002/cplu.201100010
74 R P Ojha, P A Lemieux, P K Dixon, A J Liu, D J Durian. Statistical mechanics of a gas-fluidized particle. Nature, 2004, 427(6974): 521–523
https://doi.org/10.1038/nature02294
75 G Ferey, C Mellot-Draznieks, C Serre, F Millange, J Dutour, S Surble, I Margiolaki. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
https://doi.org/10.1126/science.1116275
76 M Eddaoudi, D B Moler, H Li, B Chen, T M Reineke, M O’Keeffe, O M Yaghi. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330
https://doi.org/10.1021/ar000034b
77 B Chen, S Xiang, G Qian. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research, 2010, 43(8): 1115–1124
https://doi.org/10.1021/ar100023y
78 C Y Sun, C Qin, X L Wang, G S Yang, K Z Shao, Y Q Lan, Z M Su, P Huang, C G Wang, E B Wang. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions (Cambridge, England), 2012, 41(23): 6906–6909
https://doi.org/10.1039/c2dt30357d
79 G Lu, S Li, Z Guo, O K Farha, B G Hauser, X Qi, Y Wang, X Wang, S Han, X Liu, et al.. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4(4): 310–316
https://doi.org/10.1038/nchem.1272
80 S R Venna, J B Jasinski, M A Carreon. Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010, 132(51): 18030–18033
https://doi.org/10.1021/ja109268m
81 M R Broadley, P J White, J P Hammond, I Zelko, A Lux. Zinc in plants. New Phytologist, 2007, 173(4): 677–702
https://doi.org/10.1111/j.1469-8137.2007.01996.x
82 H Zheng, Y Zhang, L Liu, W Wan, P Guo, A M Nystrom, X Zou. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 2016, 138(3): 962–968
https://doi.org/10.1021/jacs.5b11720
83 H Wang, T Li, J Li, W Tong, C Gao. One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 568: 224–230
https://doi.org/10.1016/j.colsurfa.2019.02.025
84 P Horcajada, T Chalati, C Serre, B Gillet, C Sebrie, T Baati, J F Eubank, D Heurtaux, P Clayette, C Kreuz, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010, 9(2): 172–178
https://doi.org/10.1038/nmat2608
85 N A Soomro, Q Wu, S A Amur, H Liang, A Ur Rahman, Q Yuan, Y Wei. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces. B, Biointerfaces, 2019, 182: 110364
https://doi.org/10.1016/j.colsurfb.2019.110364
86 P V Almeida, M A Shahbazi, E Makila, M Kaasalainen, J Salonen, J Hirvonen, H A Santos. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17): 10377–10387
https://doi.org/10.1039/C4NR02187H
87 A Abednejad, A Ghaee, J Nourmohammadi, A A Mehrizi. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222: 115033
https://doi.org/10.1016/j.carbpol.2019.115033
88 F Shu, D Lv, X L Song, B Huang, C Wang, Y Yu, S C Zhao. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8(12): 6581–6589
https://doi.org/10.1039/C7RA12969F
89 N Liedana, A Galve, C Rubio, C Tellez, J Coronas. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Applied Materials & Interfaces, 2012, 4(9): 5016–5021
https://doi.org/10.1021/am301365h
90 M de Matas, H G M Edwards, E E Lawson, L Shields, P York. Ft-Raman spectroscopic investigation of a pseudopolymorphic transition in caffeine hydrate. Journal of Molecular Structure, 1998, 440(1-3): 97–104
https://doi.org/10.1016/S0022-2860(97)00231-7
91 C Chu, H Lin, H Liu, X Wang, J Wang, P Zhang, H Gao, C Huang, Y Zeng, Y Tan, G Liu, X Chen. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 2017, 29(23): 1605928
https://doi.org/10.1002/adma.201605928
92 J T Robinson, K Welsher, S M Tabakman, S P Sherlock, H Wang, R Luong, H Dai. High performance in vivo near-IR (>1 mm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3(11): 779–793
https://doi.org/10.1007/s12274-010-0045-1
93 M Li, X Yang, J Ren, K Qu, X Qu. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
https://doi.org/10.1002/adma.201104864
94 K Yang, L Feng, X Shi, Z Liu. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
https://doi.org/10.1039/C2CS35342C
95 L Dykman, N Khlebtsov. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282
https://doi.org/10.1039/C1CS15166E
96 N Khlebtsov, L Dykman. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40(3): 1647–1671
https://doi.org/10.1039/C0CS00018C
97 X Ren, H Chen, V Yang, D Sun. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Frontiers of Chemical Science and Engineering, 2014, 8(3): 253–264
https://doi.org/10.1007/s11705-014-1425-y
98 S Zhang, C Sun, J Zeng, Q Sun, G Wang, Y Wang, Y Wu, S Dou, M Gao, Z Li. Ambient aqueous synthesis of ultrasmall PEGylated Cu2–x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927–8936
https://doi.org/10.1002/adma.201602193
99 Y Wang, Y Wu, Y Liu, J Shen, L Lv, L Li, L Yang, J Zeng, Y Wang, L W Zhang,et al.. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016, 26(29): 5335–5344
https://doi.org/10.1002/adfm.201601341
100 F Gao, M Sun, L Xu, L Liu, H Kuang, C Xu. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Advanced Functional Materials, 2017, 27(24): 1700605
https://doi.org/10.1002/adfm.201700605
101 S Song, H Shen, T Yang, L Wang, H Fu, H Chen, Z Zhang. Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 2017, 9(11): 9484–9495
https://doi.org/10.1021/acsami.7b00490
102 B Zhou, Y Li, G Niu, M Lan, Q Jia, Q Liang. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Applied Materials & Interfaces, 2016, 8(44): 29899–29905
https://doi.org/10.1021/acsami.6b07838
103 Y Li, N Xu, J Zhou, W Zhu, L Li, M Dong, H Yu, L Wang, W Liu, Z Xie. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6(11): 2918–2924
https://doi.org/10.1039/C8BM00830B
104 Y Li, N Xu, W Zhu, L Wang, B Liu, J Zhang, Z Xie, W Liu. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Applied Materials & Interfaces, 2018, 10(27): 22974–22984
https://doi.org/10.1021/acsami.8b06125
105 C Zheng, M Zheng, P Gong, D Jia, P Zhang, B Shi, Z Sheng, Y Ma, L Cai. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials, 2012, 33(22): 5603–5609
https://doi.org/10.1016/j.biomaterials.2012.04.044
106 M Zheng, C Yue, Y Ma, P Gong, P Zhao, C Zheng, Z Sheng, P Zhang, Z Wang, L Cai. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3): 2056–2067
https://doi.org/10.1021/nn400334y
107 S Mordon, J M Devoisselle, S Soulie-Begu, T Desmettre. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvascular Research, 1998, 55(2): 146–152
https://doi.org/10.1006/mvre.1998.2068
108 T Wang, S Li, Z Zou, L Hai, X Yang, X Jia, A Zhang, D He, X He, K Wang. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(23): 3914–3921
https://doi.org/10.1039/C8TB00351C
109 A Juzeniene, Q Peng, J Moan. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochemical & Photobiological Sciences, 2007, 6(12): 1234–1245
https://doi.org/10.1039/b705461k
110 D Lu, R Tao, Z Wang. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323
https://doi.org/10.1007/s11705-018-1750-7
111 Á Juarranz, P Jaén, F Sanz-Rodríguez, J Cuevas, S González. Photodynamic therapy of cancer. Basic principles and applications. Clinical & Translational Oncology, 2008, 10(3): 148–154
https://doi.org/10.1007/s12094-008-0172-2
112 B W Henderson, T J Dougherty. How does photodynamic therapy work? Photochemistry and Photobiology, 1992, 55(1): 145–157
https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
113 A P Castano, T N Demidova, M R Hamblin. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 279–293
https://doi.org/10.1016/S1572-1000(05)00007-4
114 D Xu, Y You, F Zeng, Y Wang, C Liang, H Feng, X Ma. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(18): 15517–15523
https://doi.org/10.1021/acsami.8b03831
115 Z Xie, S Liang, X Cai, B Ding, S Huang, Z Hou, P Ma, Z Cheng, J Lin. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Applied Materials & Interfaces, 2019, 11(35): 31671–31680
https://doi.org/10.1021/acsami.9b10685
116 C Zhang, W Bu, D Ni, S Zhang, Q Li, Z Yao, J Zhang, H Yao, Z Wang, J Shi. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106
https://doi.org/10.1002/anie.201510031
117 Z Tang, Y Liu, M He, W Bu. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
https://doi.org/10.1002/anie.201805664
118 L S Lin, J Song, L Song, K Ke, Y Liu, Z Zhou, Z Shen, J Li, Z Yang, W Tang, G Niu, H H Yang, X Chen. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906
https://doi.org/10.1002/anie.201712027
119 B Ma, S Wang, F Liu, S Zhang, J Duan, Z Li, Y Kong, Y Sang, H Liu, W Bu, L Li. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857
https://doi.org/10.1021/jacs.8b08714
120 Y Chen, J Deng, F Liu, P Dai, Y An, Z Wang, Y Zhao. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366
https://doi.org/10.1002/adhm.201900366
121 B Leader, Q J Baca, D E Golan. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39
https://doi.org/10.1038/nrd2399
122 Z Chen, N Li, S Li, M Dharmarwardana, A Schlimme, J J Gassensmith. Viral chemistry: The chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2016, 8(4): 512–534
https://doi.org/10.1002/wnan.1379
123 F Mallamace, C Corsaro, D Mallamace, S Vasi, C Vasi, P Baglioni, S V Buldyrev, S H Chen, H E Stanley. Energy landscape in protein folding and unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3159–3163
https://doi.org/10.1073/pnas.1524864113
124 S P Carmichael, M S Shell. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. Journal of Chemical Physics, 2015, 143(24): 243103
https://doi.org/10.1063/1.4929592
125 C Wang, J Luan, S Tadepalli, K K Liu, J J Morrissey, E D Kharasch, R R Naik, S Singamaneni. Silk-encapsulated plasmonic biochips with enhanced thermal stability. ACS Applied Materials & Interfaces, 2016, 8(40): 26493–26500
https://doi.org/10.1021/acsami.6b07362
126 K Liang, R Ricco, C M Doherty, M J Styles, S Bell, N Kirby, S Mudie, D Haylock, A J Hill, C J Doonan, P Falcaro. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6(1): 7240
https://doi.org/10.1038/ncomms8240
127 S K Alsaiari, S Patil, M Alyami, K O Alamoudi, F A Aleisa, J S Merzaban, M Li, N M Khashab. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143–146
https://doi.org/10.1021/jacs.7b11754
128 J Wang, Y Ye, J Yu, A R Kahkoska, X Zhang, C Wang, W Sun, R D Corder, Z Chen, S A Khan, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473
https://doi.org/10.1021/acsnano.7b08152
129 J Yang, Z Cao. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. Journal of Controlled Release, 2017, 263: 231–239
https://doi.org/10.1016/j.jconrel.2017.01.043
130 J Yu, Y Zhang, Y Ye, R DiSanto, W Sun, D Ranson, F S Ligler, J B Buse, Z Gu. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8260–8265
https://doi.org/10.1073/pnas.1505405112
131 W H Chen, G F Luo, M Vazquez-Gonzalez, R Cazelles, Y S Sohn, R Nechushtai, Y Mandel, I Willner. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano, 2018, 12(8): 7538–7545
https://doi.org/10.1021/acsnano.8b03417
132 R I Weed, C F Reed, G Berg. Is hemoglobin an essential structural component of human erythrocyte membranes? Journal of Clinical Investigation, 1963, 42(4): 581–588
https://doi.org/10.1172/JCI104747
133 H Ranji-Burachaloo, A Reyhani, P A Gurr, D E Dunstan, G G Qiao. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11(12): 5705–5716
https://doi.org/10.1039/C8NR09107B
134 P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. Rna-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033
135 L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143
136 M Li, Y Tao, Y Shu, J R LaRochelle, A Steinauer, D Thompson, A Schepartz, Z Y Chen, D R Liu. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. Journal of the American Chemical Society, 2015, 137(44): 14084–14093
https://doi.org/10.1021/jacs.5b05694
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed