Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (1): 127-137   https://doi.org/10.1007/s11705-020-1936-7
  本期目录
Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system
Leijing Liu1, Hao Zhang1, Bo Xiao2, Yang Liu1, Bin Xu1, Chen Wang3, Shanpeng Wen3, Erjun Zhou2, Gang Chen4, Chan Im5, Wenjing Tian1()
1. State Key Laboratory of Supramolecular Structures and Materials, Jilin University, Changchun 130012, China
2. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
3. State Key Laboratory on Integrated Optoelectronics and College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
4. Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, Jilin University, Changchun 130012, China
5. Department of Chemistry, Konkuk University, Seoul 05029, Republic of Korea
 全文: PDF(1546 KB)   HTML
Abstract

Effects of a benzotriazole (BTA)-based small molecule, BTA2, as the third component on the charge carrier generation and recombination behavior of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) organic solar cells (OSCs) were investigated by optical simulation of a transfer matrix model (TMM), photo-induced charge extraction by linearly increasing voltage (photo-CELIV) technique, atomic force microscope (AFM), and the Onsager–Braun model analysis. BTA2 is an A2-A1-D-A1-A2-type non-fullerene small molecule with thiazolidine-2,4-dione, BTA, and indacenodithiophene as the terminal acceptor (A2), bridge acceptor (A1), and central donor (D), respectively. The short-circuit current density of the OSCs with BTA2 can be enhanced significantly owing to a complementary absorption spectrum. The optical simulation of TMM shows that the ternary OSCs exhibit higher internal absorption than the traditional binary OSCs without BTA2, resulting in more photogenerated excitons in the ternary OSCs. The photo-CELIV investigation indicates that the ternary OSCs suffer higher charge trap-limited bimolecular recombination than the binary OSCs. AFM images show that BTA2 aggravates the phase separation between the donor and the acceptor, which is disadvantageous to charge carrier transport. The Onsager-Braun model analysis confirms that despite the charge collection efficiency of the ternary OSCs being lower than that of the binary OSCs, the optimized photon absorption and exciton generation processes of the ternary OSCs achieve an increase in photogenerated current and thus improve power conversion efficiency.

Key wordsthird component    organic solar cells    charge carrier generation    charge carrier recombination    bimolecular recombination
收稿日期: 2020-01-19      出版日期: 2021-01-12
Corresponding Author(s): Wenjing Tian   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(1): 127-137.
Leijing Liu, Hao Zhang, Bo Xiao, Yang Liu, Bin Xu, Chen Wang, Shanpeng Wen, Erjun Zhou, Gang Chen, Chan Im, Wenjing Tian. Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system. Front. Chem. Sci. Eng., 2021, 15(1): 127-137.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1936-7
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I1/127
Fig.1  
Fig.2  
Fig.3  
Devices Voc/V Jsc/(mA?cm?2) FF/% me/(cm2?V?1?s?1) mh/(cm2?V?1?s?1) PCE/%
Without BTA2 0.73 15.3 65.25 4.35×10?4 1.83×10?4 7.2
With 10% BTA2 0.74 16.7 64.14 2.63×10?4 9.8×10?5 8.0
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Devices n0/cm?3 t/ms a gbi/(cm3?s?1)
Without BTA2
With 10% BTA2
8.22×1016
9.34×1016
9.14
7.79
0.897
0.821
5.94×10?13
9.18×10?13
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Devices gbi/(cm3?s?1) G/(1025 m?3) hcc
With 10% BTA2 9.18×10?13 1.25 85%
Without BTA2 5.94×10?13 1.03 91%
Tab.3  
1 A J Heeger. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Advanced Materials, 2014, 26(1): 10–28
https://doi.org/10.1002/adma.201304373
2 Y Z Lin, Y F Li, X W Zhan. Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews, 2012, 41(11): 4245–4272
https://doi.org/10.1039/c2cs15313k
3 N Espinosa, M Hosel, M Jorgensen, F C Krebs. Large scale deployment of polymer solar cells on land, on sea and in the air. Energy & Environmental Science, 2014, 7(3): 855–866
https://doi.org/10.1039/c3ee43212b
4 J Jensen, M Hosel, A L Dyer, F C Krebs. Development and manufacture of polymer-based electrochromic devices. Advanced Functional Materials, 2015, 25(14): 2073–2090
https://doi.org/10.1002/adfm.201403765
5 B C Thompson, J M J Frechet. Organic photovoltaics-polymer-fullerene composite solar cells. Angewandte Chemie International Edition, 2008, 47(1): 58–77
https://doi.org/10.1002/anie.200702506
6 C J Brabec, M Heeney, I McCulloch, J Nelson. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chemical Society Reviews, 2011, 40(3): 1185–1199
https://doi.org/10.1039/C0CS00045K
7 W R Cao, J G Xue. Recent progress in organic photovoltaics: Device architecture and optical design. Energy & Environmental Science, 2014, 7(7): 2123–2144
https://doi.org/10.1039/c4ee00260a
8 L Y Lu, T Y Zheng, Q H Wu, A M Schneider, D L Zhao, L P Yu. Recent advances in bulk heterojunction polymer solar cells. Chemical Reviews, 2015, 115(23): 12666–12731
https://doi.org/10.1021/acs.chemrev.5b00098
9 L Ye, S Q Zhang, L J Huo, M J Zhang, J H Hou. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Accounts of Chemical Research, 2014, 47(5): 1595–1603
https://doi.org/10.1021/ar5000743
10 Y Y Liang, Y Wu, D Q Feng, S T Tsai, H J Son, G Li, L P Yu. Development of new semiconducting polymers for high performance solar cells. Journal of the American Chemical Society, 2009, 131(1): 56–57
https://doi.org/10.1021/ja808373p
11 H T Fu, Z H Wang, Y M Sun. Polymer donors for high-performance non-fullerene organic solar cells. Angewandte Chemie International Edition, 2019, 58(14): 4442–4453
https://doi.org/10.1002/anie.201806291
12 C C Chen, W H Chang, K Yoshimura, K Ohya, J B You, J Gao, Z R Hong, Y Yang. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Advanced Materials, 2014, 26(32): 5670–5677
https://doi.org/10.1002/adma.201402072
13 S S Li, L Ye, W C Zhao, S Q Zhang, S Mukherjee, H Ade, J H Hou. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423–9429
https://doi.org/10.1002/adma.201602776
14 L Nian, K Gao, F Liu, Y Y Kan, X F Jiang, L L Liu, Z Q Xie, X B Peng, T P Russell, Y G Ma. 11% efficient ternary organic solar cells with high composition tolerance via integrated near-IR sensitization and interface engineering. Advanced Materials, 2016, 28(37): 8184–8190
https://doi.org/10.1002/adma.201602834
15 W C Zhao, S S Li, H F Yao, S Q Zhang, Y Zhang, B Yang, J H Hou. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151
https://doi.org/10.1021/jacs.7b02677
16 M M Li, K Gao, X J Wan, Q Zhang, B Kan, R X Xia, F Liu, X Yang, H R Feng, W Ni, et al. Solution-processed organic tandem solar cells with power conversion efficiencies>12%. Nature Photonics, 2017, 11(2): 85–90
https://doi.org/10.1038/nphoton.2016.240
17 Q Liu, Y Jiang , K Jin, J Q Qin, J G Xu, W T Li, J Xiong, J F Liu, Z Xiao, K Sun, et al. 18% efficiency organic solar cells. Science Bulletin, 2020, doi:10.1016/j.scib.2020.01.001 (in press)
18 L Meng, Y Zhang, X Wan, C Li, X Zhang, Y Wang, X Ke, Z Xiao, L Ding, R Xia, H L Yip, Y Cao, Y Chen. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407): 1094–1098
https://doi.org/10.1126/science.aat2612
19 B Y Qi, J Z Wang. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15(23): 8972–8982
https://doi.org/10.1039/c3cp51383a
20 Z H Chen, P Cai, J W Chen, X C Liu, L J Zhang, L F Lan, J B Peng, Y G Ma, Y Cao. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Advanced Materials, 2014, 26(16): 2586–2591
https://doi.org/10.1002/adma.201305092
21 Y Cui, C Y Yang, H F Yao, J Zhu, Y M Wang, G X Jia, F Gao, J H Hou. Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. Advanced Materials, 2017, 29(43): 1703080
22 K D Deshmukh, T S Qin, J K Gallaher, A C Y Liu, E Gann, K O’Donnell, L Thomsen, J M Hodgkiss, S E Watkins, C R McNeill. Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy & Environmental Science, 2015, 8(1): 332–342
https://doi.org/10.1039/C4EE03059A
23 H F Yao, Y Cui, R N Yu, B W Gao, H Zhang, J H Hou. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angewandte Chemie International Edition, 2017, 56(11): 3045–3049
https://doi.org/10.1002/anie.201610944
24 N Gasparini, X C Jiao, T Heumueller, D Baran, G J Matt, S Fladischer, E Spiecker, H Ade, C J Brabec, T Ameri. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nature Energy, 2016, 1(9): 16118–16122
https://doi.org/10.1038/nenergy.2016.118
25 T Ameri, N Li, C J Brabec. Highly efficient organic tandem solar cells: A follow up review. Energy & Environmental Science, 2013, 6(8): 2390–2413
https://doi.org/10.1039/c3ee40388b
26 T Ameri, G Dennler, C Lungenschmied, C J Brabec. Organic tandem solar cells: A review. Energy & Environmental Science, 2009, 2(4): 347–363
https://doi.org/10.1039/b817952b
27 L J Zuo, J S Yu, X L Shi, F Lin, W H Tang, A K Y Jen. High-efficiency nonfullerene organic solar cells with a parallel tandem configuration. Advanced Materials, 2017, 29(34): 1702547
28 M E Farahat, D Patra, C H Lee, C W Chu. Synergistic effects of morphological control and complementary absorption in efficient all-small-molecule ternary-blend solar cells. ACS Applied Materials & Interfaces, 2015, 7(40): 22542–22550
https://doi.org/10.1021/acsami.5b06831
29 B Xiao, A L Tang, J Q Zhang, A Mahmood, Z X Wei, E J Zhou. Achievement of high Voc of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Advanced Energy Materials, 2017, 7(8): 1602269
30 B Xiao, A L Tang, J Yang, Z X Wei, E Zhou. P3HT-based photovoltaic cells with a high Voc of 1.22 V by using a benzotriazole-containing nonfullerene acceptor end-capped with thiazolidine-2,4-dione. ACS Macro Letters, 2017, 6(4): 410–414
https://doi.org/10.1021/acsmacrolett.7b00097
31 A L Tang, W Song, B Xiao, J Guo, J Min, Z Y Ge, J Q Zhang, Z X Wei, E J Zhou. Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chemistry of Materials, 2019, 31(11): 3941–3947
https://doi.org/10.1021/acs.chemmater.8b05316
32 H Zhang, Y Liu, B Xu, G Chen, C Wang, S P Wen, Y W Li, L J Liu, W J Tian. Effects of DIO on the charge recombination behaviors of PTB7:PC71BM photovoltaics. Organic Electronics, 2019, 67: 50–56
https://doi.org/10.1016/j.orgel.2018.12.020
33 Y Liu, J Y Qian, H Zhang, B Xu, Y P Zhang, L J Liu, G Chen, W J Tian. Influence of organic cations on intrinsic properties of lead iodide perovskite solar cells. Organic Electronics, 2018, 62: 269–276
https://doi.org/10.1016/j.orgel.2018.08.016
34 H Park, J An, J Song, M Lee, H Ahn, M Jahnel, C Im. Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells. Solar Energy Materials and Solar Cells, 2015, 143: 242–249
https://doi.org/10.1016/j.solmat.2015.07.002
35 C Groves N C Greenham. Bimolecular recombination in polymer electronic devices. Physical Review B, 2008, 78(15): 155205
36 P E Keivanidis, V Kamm, C Dyer-Smith, W M Zhang, F Laquai, I McCulloch, D D C Bradley, J Nelson. Delayed luminescence spectroscopy of organic photovoltaic binary blend films: Probing the emissive non-geminate charge recombination. Advanced Materials, 2010, 22(45): 5183–5187
https://doi.org/10.1002/adma.201002389
37 Y Liu, Y J Gao, B Xu, P H M van Loosdrecht, W J Tian. Trap-limited bimolecular recombination in poly(3-hexylthiophene): Fullerene blend films. Organic Electronics, 2016, 38: 8–14
https://doi.org/10.1016/j.orgel.2016.07.018
38 A J Mozer, G Dennler, N S Sariciftci, M Westerling, A Pivrikas, R Osterbacka, G Juska. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells. Physical Review B, 2005, 72(3): 035217
39 A Pivrikas, N S Sariciftci, G Juska, R Osterbacka. A review of charge transport and recombination in polymer/fullerene organic solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15(8): 677–696
https://doi.org/10.1002/pip.791
40 D Y Liu, J L Yang, T L Kelly. Compact layer free perovskite solar cells with 13.5% efficiency. Journal of the American Chemical Society, 2014, 136(49): 17116–17122
https://doi.org/10.1021/ja508758k
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed