Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (2): 340-350   https://doi.org/10.1007/s11705-020-1942-9
  本期目录
Antibacterial and anti-flaming PA6 composite with metathetically prepared nano AgCl@BaSO4 co-precipitates
Wei Zhang1, Boren Xu1, Caihong Gong1, Chunwang Yi1,2(), Shen Zhang1
1. Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
2. National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
 全文: PDF(4313 KB)   HTML
Abstract

In this study, a facile and environmentally friendly method with low energy consumption for preparing nanoscale AgCl and BaSO4 co-precipitates (AgCl@BaSO4 co-precipitates) was developed based on the metathetical reaction. Then, the dried co-precipitates were melt-compounded with polyamide 6 (PA6) resins at a specified mass ratio in a twin-screw extruder. The results demonstrated that in the absence of any coating agent or carrier, the nanoparticles of AgCl@BaSO4 co-precipitates were homogeneously dispersed in the PA6 matrix. Further analysis showed that after the addition of AgCl@BaSO4 co-precipitates, the antibacterial performance, along with the flame-retardance and anti-dripping characteristics of PA6, was enhanced significantly. In addition, the PA6 composites possessed high spinnability in producing pre-oriented yarn.

Key wordsnano AgCl@BaSO4 co-precipitates    antibacterial    flame resistance    PA6 composite    PA6 yarn
收稿日期: 2019-12-15      出版日期: 2021-03-10
Corresponding Author(s): Chunwang Yi   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 340-350.
Wei Zhang, Boren Xu, Caihong Gong, Chunwang Yi, Shen Zhang. Antibacterial and anti-flaming PA6 composite with metathetically prepared nano AgCl@BaSO4 co-precipitates. Front. Chem. Sci. Eng., 2021, 15(2): 340-350.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1942-9
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I2/340
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Sample
PA6-AgCl@BaSO4
E. coli/mm S. aureus/mm
Pure PA6 0 0
0.2 wt-%Ag+ 0 0
0.3 wt-%Ag+ 12.1 11.8
0.4 wt-%Ag+ 15.6 14.8
0.5 wt-%Ag+ 16.2 16.1
0.6 wt-%Ag+ 17.1 16.9
1 wt-%Ag+ 18.7 18.3
Tab.1  
Sample PA6-AgCl@BaSO4 LOI/% d1 d2 Ignition of cottons(p/p) UL-94
Pure PA6 25.5±0.2 2 39 Yes(5/5) V-2
0.5 wt-% 26.4±0.1 2 16 Yes(5/5) V-2
1.5 wt-% 30.0±0.2 1 4 No(3/5) V-1
2.5 wt-% 30.6±0.3 1 2 No(0/5) V-0
Tab.2  
Fig.9  
Fig.10  
Sample PA6-AgCl@BaSO4 Drawing ratio Tensile strength
/(cN·dtex?1)
Elongation at break
/%
Denier
/(d·f−1)
Pure PA6 2.5 2.2 97.8 179.8/36
2.8 2.5 73.4 163.1/36
1.5% 2.5 2.3 86.2 173.67/36
2.8 2.4 76.0 163.80/36
2.5% 2.5 2.4 85.6 182.86/36
2.8 2.6 64.5 165.53/36
Tab.3  
1 G R Hatfield, J H Glans, W B Hammond. Characterization of structure and morphology in nylon 6 by solid-state carbon-13 and nitrogen-15 NMR. Macromolecules, 1990, 23(6): 1654–1658
https://doi.org/10.1021/ma00208a016
2 S M Peng, L Peng, C W Yi, W Zhang, X Wang. A novel synthetic strategy for preparing semi-aromatic components modified polyamide 6 polymer. Journal of Polymer Science. Part A, Polymer Chemistry, 2018, 56(9): 959–967
https://doi.org/10.1002/pola.28983
3 G Panthi, N A M Barakat, P Risal, A Yousef, B Pant, A R Unnithan, H Y Kim. Preparation and characterization of nylon-6/gelatin composite nanofibers via electrospinning for biomedical applications. Fibers and Polymers, 2013, 14(5): 718–723
https://doi.org/10.1007/s12221-013-0718-y
4 F F Qi, Y Cao, M Wang, F Rong, Q Xu. Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: Kinetic and thermodynamic studies. Nanoscale Research Letters, 2014, 9(1): 353–362
https://doi.org/10.1186/1556-276X-9-353
5 N J W Reuvers, H P Huinink, H R Fischer, O C G Adan. Quantitative water uptake study in thin nylon-6 films with NMR imaging. Macromolecules, 2012, 45(4): 1937–1945
https://doi.org/10.1021/ma202719x
6 T Liu, R Wang, Z F Dong, Z G Zhu, X Q Zhang, J G Liu. Role of caged bicyclic pentaerythritol phosphate alcohol in flame retardancy of PA6 and mechanism study. Journal of Applied Polymer Science, 2018, 135(19): 46236–46243
https://doi.org/10.1002/app.46236
7 T V Duncan. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 2011, 363(1): 1–24
https://doi.org/10.1016/j.jcis.2011.07.017
8 J W Wiechers, N Musee. Engineered inorganic nanoparticles and cosmetics: Facts, issues, knowledge gaps and challenges. Journal of Biomedical Nanotechnology, 2010, 6(5): 408–431
https://doi.org/10.1166/jbn.2010.1143
9 G Yuan, R Cranston. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 2008, 78(1): 60–72
https://doi.org/10.1177/0040517507082332
10 Y T Yang, C W Yi. Surface modification of TiO2 for the preparation of full-dull polyamide-6 polymers. Journal of Materials Science, 2019, 54(13): 9456–9465
https://doi.org/10.1007/s10853-019-03549-x
11 S Chernousova, M Epple. Silver as antibacterial agent: Ion, nanoparticle and metal. Angewandte Chemie International Edition, 2013, 52(6): 1636–1653
https://doi.org/10.1002/anie.201205923
12 Z Liu, W Guo, C Guo, S Liu. Fabrication of AgBr nanomaterials as excellent antibacterial agents. RSC Advances, 2015, 5(89): 72872–72880
https://doi.org/10.1039/C5RA12575H
13 R Kumar, H Münstedt. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 2005, 26(14): 2081–2088
https://doi.org/10.1016/j.biomaterials.2004.05.030
14 O Choi, Z Q Hu. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology, 2008, 42(12): 4583–4588
https://doi.org/10.1021/es703238h
15 Z M Davoudi, A E Kandjani, A I Bhatt, I L Kyratzis, A P O’Mullane, V Bansal. Hybrid antibacterial fabrics with extremely high aspect ratio Ag/AgTCNQ nanowires. Advanced Functional Materials, 2014, 24(8): 1047–1053
https://doi.org/10.1002/adfm.201302368
16 X Cao, H Zhang, M Chen, L Wang. Preparation, characterization, and properties of modified barium sulfate nanoparticles/polyethylene nanocomposites as T-shaped copper intrauterine devices. Journal of Applied Polymer Science, 2014, 131(12): 40393–40399
https://doi.org/10.1002/app.40393
17 J Tang, Q Chen, L G Xu, S Zhang, L Z Feng, L Cheng, H Xu, Z Liu, R Peng. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Applied Materials & Interfaces, 2013, 5(9): 3867–3874
https://doi.org/10.1021/am4005495
18 J R He, J Su, J L Wang, L Z Zhang. Synthesis of water-free PEDOT with polyvinylpyrrolidone stabilizer in organic dispersant system. Organic Electronics, 2018, 53: 117–126
https://doi.org/10.1016/j.orgel.2017.11.035
19 B Yoon, S H Lee, L Feng. Dispersion and densification of nano Si-(Al)-C powder with amorphous/nano-crystalline bi-modal microstructure. Journal of the American Ceramic Society, 2018, 101(7): 2760–2769
https://doi.org/10.1111/jace.15455
20 R Horrocks, A Sitpalan, C Zhou, B K Kandola. Flame retardant polyamide fibres: The challenge of minimising flame retardant additive contents with added nanoclays. Polymers, 2016, 8(8): 288–304
https://doi.org/10.3390/polym8080288
21 A Buczko, T Stelzig, L Bommer, D Rentsch, M Heneczkowski, S Gaan. Bridged DOPO derivatives as flame retardants for PA6. Polymer Degradation & Stability, 2014, 107: 158–165
https://doi.org/10.1016/j.polymdegradstab.2014.05.017
22 Z B Guo, C L Wang, J Li, Q Yao. Micro-intumescent flame retardant polyamide 6 based on cyclic phosphate grafting phenol formaldehyde. Polymers for Advanced Technologies, 2016, 27(7): 955–963
https://doi.org/10.1002/pat.3755
23 G J Si, D X Li, Y L You, X Hu. Investigation of the influence of red phosphorus, expansible graphite and zinc borate on flame retardancy and wear performance of glass fiber reinforced PA6 composites. Polymer Composites, 2017, 38(10): 2090–2097
https://doi.org/10.1002/pc.23781
24 H Peng, W C Tjiu, L Shen, S Huang, C He, T Liu. Preparation and mechanical properties of exfoliated CoAl layered double hydroxide/polyamide 6 nanocomposites by in situ polymerization. Composites Science and Technology, 2009, 69(7-8): 991–996
https://doi.org/10.1016/j.compscitech.2009.01.005
25 M Casetta, G Michaux, B Ohl, S Duquesne, S Bourbigot. Key role of magnesium hydroxide surface treatment in the flame retardancy of glass fiber reinforced polyamide 6. Polymer Degradation & Stability, 2018, 148: 95–103
https://doi.org/10.1016/j.polymdegradstab.2018.01.007
26 J Alongi, G Malucelli. Cotton fabrics treated with novel oxidic phases acting as effective smoke suppressants. Carbohydrate Polymers, 2012, 90(1): 251–260
https://doi.org/10.1016/j.carbpol.2012.05.032
27 H J Kim, Y Kwon, C K Kim. Mechanical property and thermal stability of polyurethane composites reinforced with polyhedral oligomeric silsesquioxanes and inorganic flame retardant filler. Journal of Nanoscience and Nanotechnology, 2014, 14(8): 6048–6052
https://doi.org/10.1166/jnn.2014.8808
28 Y Ding, Y Jiang, F Xu, J Yin, H Ren, Q Zhuo, Z Long, P Zhang. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochemistry Communications, 2010, 12(1): 10–13
https://doi.org/10.1016/j.elecom.2009.10.023
29 Z L Jiang, C S Wang, S Y Fang, P Ji, H P Wang, C C Ji. Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process. Journal of Applied Polymer Science, 2018, 135(27): 46414–46424
https://doi.org/10.1002/app.46414
30 Y J Chang, X X Yan, Q Wang, L L Ren, J Tong, J Zhou. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry, 2017, 227: 369–375
https://doi.org/10.1016/j.foodchem.2017.01.111
31 H Daupor, S Wongnawa. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity. Materials Chemistry and Physics, 2015, 159: 71–82
https://doi.org/10.1016/j.matchemphys.2015.03.054
32 J N Yang, C Wang, K Y Shao, G X Ding, Y L Tao, J B Zhu. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate. Russian Journal of Physical Chemistry A. Focus on Chemistry, 2015, 89(11): 2092–2096
https://doi.org/10.1134/S0036024415110242
33 M Shahzamani, I Rezaeian, M S Loghmani, P Zahedi, A Rezaeian. Effects of BaSO4, CaCO3, kaolin and quartz fillers on mechanical, chemical and morphological properties of cast polyurethane. Plastics. Rubber and Composites: Macromolecular Engineering, 2012, 41(6): 263–269
https://doi.org/10.1179/1743289811Y.0000000035
34 R Damerchely, A S Rashidi, R Khajavi. Morphology and mechanical properties of antibacterial nylon 6/nano-silver nano-composite multifilament yarns. Textile Research Journal, 2011, 81(16): 1694–1701
https://doi.org/10.1177/0040517511410104
35 M Venkatram, H N R Narasimha Murthy, A Gaikwad, S A Mankunipoyil, S Ramakrishna, P Ayalasomayajula Ratna. Antibacterial and flame retardant properties of Ag-MgO/nylon 6 electrospun nanofibers for protective applications. Clothing & Textiles Research Journal, 2018, 36(4): 296–309
https://doi.org/10.1177/0887302X18783071
36 K Kawahara, K Tsuruda, M Morishita, M Uchida. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 2000, 16(6): 452–455
https://doi.org/10.1016/S0109-5641(00)00050-6
37 B Pant, H R Pant, D R Pandeya, G Panthi, K T Nam, S T Hong, C S Kim, H Y Kim. Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2012, 395: 94–99
https://doi.org/10.1016/j.colsurfa.2011.12.011
38 G X Fei, Y Liu, Q Wang. Synergistic effects of novolac-based char former with magnesium hydroxide in flame retardant polyamide-6. Polymer Degradation & Stability, 2008, 93(7): 1351–1356
https://doi.org/10.1016/j.polymdegradstab.2008.03.031
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed