Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 562-570   https://doi.org/10.1007/s11705-020-1946-5
  本期目录
Reinforcement of the two-stage leaching of laterite ores using surfactants
Peiyu Zhang1,2(), Hairui Wang3, Jingcheng Hao1,2, Jiwei Cui1,2
1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
2. Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, China
3. Shandong Environmental Protection Industry Group Co. Ltd., Jinan 250000, China
 全文: PDF(782 KB)   HTML
Abstract

A two-stage leaching process, namely, high-pressure acid leaching-atmospheric acid leaching, was used to treat laterite ores under mild conditions. The leaching ratio of Ni was low because of adsorption and incomplete leaching. In this work, surfactants were used as additives to boost the leaching ratio of Ni. The effect of surfactant type (cationic, anionic, and nonionic surfactants) on the leaching ratio of Ni was investigated. Leaching results showed that stearyl trimethyl ammonium chloride (STAC) apparently increased the leaching ratios of valuable metals. The variation in the physicochemical properties of the lixiviant and the residue improved the leaching ratio of Ni in the presence of STAC. Kinetics analysis indicated that the leaching process was controlled by chemical reaction.

Key wordslaterite ore    Ni    surfactant    acid leaching
收稿日期: 2019-12-31      出版日期: 2021-05-10
Corresponding Author(s): Peiyu Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 562-570.
Peiyu Zhang, Hairui Wang, Jingcheng Hao, Jiwei Cui. Reinforcement of the two-stage leaching of laterite ores using surfactants. Front. Chem. Sci. Eng., 2021, 15(3): 562-570.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1946-5
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/562
Item L/O a) S/O b) Temperature/°C Duration/h
Range 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1 0.025, 0.05, 0.075, 0.1, 0.125, 0.15 110, 120, 130, 140, 150, 160 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2
Fixed parameters S/O= 0.1, 150°C, 1.5 h L/O= 1, 150°C, 1.5 h S/O= 0.1, L/O= 1, 1.5 h S/O= 0.1, L/O= 1, 150°C
Tab.1  
Element Ni Co Fe Mg Al Si
Content 1.14 0.09 15.10 11.13 0.65 14.06
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Temperature /°C 1 ? (1 ? x)1/3 1 ? 2/3x ? (1 ? x)2/3
k R2 k R2
110 0.05788 0.9867 0.00403 0.8527
120 0.1008 0.9436 0.01256 0.6929
130 0.1602 0.9332 0.03002 0.7011
140 0.2470 0.9514 0.06248 0.7801
150 0.3525 0.9708 0.1075 0.8542
160 0.4582 0.9871 0.1544 0.9279
Tab.3  
Temperature /°C 1 ? (1 ? x)1/3 1 ? 2/3x ? (1 ? x)2/3
k R2 k R2
110 0.04215 0.9320 0.00241 0.7086
120 0.07336 0.9067 0.00728 0.6452
130 0.1077 0.9044 0.01509 0.6680
140 0.1718 0.9339 0.03413 0.7282
150 0.2565 0.9745 0.06484 0.8448
160 0.3396 0.9859 0.09965 0.9619
Tab.4  
1 A E M Warner, C M Díaz, A D Dalvi, P J Mackey, A V Tarasov. JOM world nonferrous smelter survey, part III: Nickel: Laterite. JOM, 2006, 58(4): 11–20
https://doi.org/10.1007/s11837-006-0209-3
2 M Rao, G Li, T Jiang, J Luo, Y Zhang, X Fan. Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: A review. JOM, 2013, 65(11): 1573–1583
https://doi.org/10.1007/s11837-013-0760-7
3 J Z Khoo, N Haque, G Woodbridge, R McDonald, S Bhattacharya. A life cycle assessment of a new laterite processing technology. Journal of Cleaner Production, 2017, 142: 1765–1777
https://doi.org/10.1016/j.jclepro.2016.11.111
4 X Wang, B Zhang, X Lin, S Xu, W Yao, R Ye. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geology Reviews, 2016, 73: 417–431
https://doi.org/10.1016/j.oregeorev.2015.08.015
5 S Tadepalli, Z Wang, J Slocik, R R Naik, S Singamaneni. Effect of size and curvature on the enzyme activity of bionanoconjugates. Nanoscale, 2017, 9(40): 15666–15672
https://doi.org/10.1039/C7NR02434G
6 S Çetintaş, U Yildiz, D Bingöl. A novel reagent-assisted mechanochemical method for nickel recovery from lateritic ore. Journal of Cleaner Production, 2018, 199: 616–632 doi:10.1016/j.jclepro.2018.07.212
7 D B Johnson, C A du Plessis. Biomining in reverse gear: Using bacteria to extract metals from oxidised ores. Minerals Engineering, 2015, 75(Suppl C): 2–5
https://doi.org/10.1016/j.mineng.2014.09.024
8 A Oxley, M E Smith, O Caceres. Why heap leach nickel laterites? Minerals Engineering, 2016, 88: 53–60
https://doi.org/10.1016/j.mineng.2015.09.018
9 G M Mudd. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews, 2010, 38(1): 9–26
https://doi.org/10.1016/j.oregeorev.2010.05.003
10 X Guo, W Shi, D Li, Q Tian. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 191–195
https://doi.org/10.1016/S1003-6326(11)60698-5
11 J MacCarthy, J Addai-Mensah, A Nosrati. Atmospheric acid leaching of siliceous goethitic Ni laterite ore: Effect of solid loading and temperature. Minerals Engineering, 2014, 69: 154–164
https://doi.org/10.1016/j.mineng.2014.08.005
12 G Li, Q Zhou, Z Zhu, J Luo, M Rao, Z Peng, T Jiang. Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite. Journal of Cleaner Production, 2018, 189: 620–626
https://doi.org/10.1016/j.jclepro.2018.04.083
13 J Li, D Li, Z Xu, C Liao, Y Liu, B Zhong. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution. Journal of Cleaner Production, 2018, 179: 24–30
https://doi.org/10.1016/j.jclepro.2018.01.085
14 J Luo, G Li, M Rao, Z Peng, Y Zhang, T Jiang. Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Minerals Engineering, 2015, 78: 38–44
https://doi.org/10.1016/j.mineng.2015.03.030
15 J Li, Z Chen, B Shen, Z Xu, Y Zhang. The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. Journal of Cleaner Production, 2017, 140: 1148–1155
https://doi.org/10.1016/j.jclepro.2016.10.050
16 K Liu, Q Chen, H Hu, Z Yin, B Wu. Pressure acid leaching of a Chinese laterite ore containing mainly maghemite and magnetite. Hydrometallurgy, 2010, 104(1): 32–38
https://doi.org/10.1016/j.hydromet.2010.04.008
17 X Lv, L Wang, Z You, W Yu, X Lv. A novel method of smelting a mixture of two types of laterite ore to prepare ferronickel. JOM, 2019, 71(11): 4191–4197 doi:10.1007/s11837-019-03771-7
18 W C Liao, I Willner. Synthesis and applications of stimuli-responsive DNA-based nano- and micro-sized capsules. Advanced Functional Materials, 2017, 27(41): 1702732
https://doi.org/10.1002/adfm.201702732
19 Y Shang, G van Weert. Iron control in nitrate hydrometallurgy by autoclave hydrolysis of iron(III) nitrate. Hydrometallurgy, 1993, 33(3): 273–290
https://doi.org/10.1016/0304-386X(93)90067-N
20 P B Queneau, R E Doane, M W Cooperrider, M H Berggren, P Rey. Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore. Metallurgical Transactions. B, Process Metallurgy, 1984, 15(3): 433–440
https://doi.org/10.1007/BF02657373
21 R G McDonald, B I Whittington. Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy, 2008, 91(1): 35–55
https://doi.org/10.1016/j.hydromet.2007.11.009
22 D Neudorf, D Huggins. Method for nickel and cobalt recovery from laterite ores by combination of atmospheric and moderate pressure leaching. US Patent, 20060002835 A1, 2006-01-05
23 P Zhang. Applied basic research on the new process for the selective leaching of Ni and Co from laterite ore by leaching-hydrolysis coupling reactions. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2016, 109–121
24 P Zhang, L Sun, H Wang, J Cui, J Hao. Surfactant-assistant atmospheric acid leaching of laterite ore for the improvement of leaching efficiency of nickel and cobalt. Journal of Cleaner Production, 2019, 228: 1–7
https://doi.org/10.1016/j.jclepro.2019.04.305
25 F Dolian, H T Briscoe. The viscosities of solutions of chlorides in certain solvents. Journal of Physical Chemistry, 1937, 41(8): 1129–1138
https://doi.org/10.1021/j150386a011
26 S S Han, Z Y Li, J Y Zhu, K Han, Z Y Zeng, W Hong, W X Li, H Z Jia, Y Liu, R X Zhuo, X Z Zhang. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small, 2015, 11(21): 2543–2554
https://doi.org/10.1002/smll.201402865
27 Y Chen, S Zhang, S Cao, S Li, F Chen, S Yuan, C Xu, J Zhou, X Feng, X Ma, B Wang. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Advanced Materials, 2017, 29(15): 1606221
https://doi.org/10.1002/adma.201606221
28 X Li, Y Liu, C Zhang, T Wen, L Zhuang, X Wang, G Song, D Chen, Y Ai, T Hayat, X Wang. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chemical Engineering Journal, 2018, 336: 241–252
https://doi.org/10.1016/j.cej.2017.11.188
29 S M Garman, T P Luxton, M J Eick. Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid. Journal of Environmental Quality, 2004, 33(5): 1703–1708
https://doi.org/10.2134/jeq2004.1703
30 M Ashraf, Z I Zafar, T M Ansari. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy, 2005, 80(4): 286–292
https://doi.org/10.1016/j.hydromet.2005.09.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed