Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 538-551   https://doi.org/10.1007/s11705-020-1958-1
  本期目录
Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution
Xiaoyan Deng1, Luxing Wang1, Qihui Xiu2, Ying Wang2, Hong Han2, Dongmei Dai2, Yongji Xu2, Hongtao Gao2(), Xien Liu2
1. College of Environment and Safety Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
2. College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
 全文: PDF(1791 KB)   HTML
Abstract

In this work, an adsorbent, which we call MnPT, was prepared by combining MnO2, polyethylenimine and tannic acid, and exhibited efficient performance for Cu(II) and Cr(VI) removal from aqueous solution. The oxygen/nitrogen-containing functional groups on the surface of MnPT might increase the enrichment of metal ions by complexation. The maximum adsorption capacities of MnPT for Cu(II) and Cr(VI) were 121.5 and 790.2 mg·g1, respectively. The surface complexation formation model was used to elucidate the physicochemical interplay in the process of Cu(II) and Cr(VI) co-adsorption on MnPT. Electrostatic force, solvation action, adsorbate–adsorbate lateral interaction, and complexation were involved in the spontaneous adsorption process. Physical electrostatic action was dominant in the initial stage, whereas chemical action was the driving force leading to adsorption equilibrium. It should be noted that after adsorption on the surface of MnPT, Cr(VI) reacted with some reducing functional groups (hydroxylamine-NH2) and was converted into Cr(III). The adsorption capacity declined by 12% after recycling five times. Understanding the adsorption mechanism might provide a technical basis for the procedural design of heavy metal adsorbents. This MnPT nanocomposite has been proven to be a low-cost, efficient, and promising adsorbent for removing heavy metal ions from wastewater.

Key wordsMnO2-polyethylenimine-tannic acid composite    surface complexation formation model    Cu(II)    Cr(VI)    physicochemical mechanism
收稿日期: 2020-02-15      出版日期: 2021-05-10
Corresponding Author(s): Hongtao Gao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 538-551.
Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu. Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution. Front. Chem. Sci. Eng., 2021, 15(3): 538-551.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1958-1
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/538
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Metal ion species C0
/(mg?L?1)
qe,exp
/(mg?g-1)
Pseudo-first-order Pseudo-second-order
qe,cal /(mg?g-1) k1
/(10?2?min-1)
R2 qe,cal
/(mg?g-1)
k2
/(10?3?min-1)
R2
Cu(II) 75 68.81 14.23 1.93 0.962 69.78 3.73 0.999
100 87.58 20.76 1.56 0.991 89.45 2.14 0.999
125 104.26 25.39 1.25 0.997 106.27 1.48 0.999
150 120.25 29.42 1.47 0.982 122.85 1.36 0.999
Cr(VI) 75 299.39 128.13 0.170 0.868 308.64 0.0347 0.999
100 395.22 202.09 0.162 0.902 406.50 0.0207 0.998
125 455.82 249.18 0.145 0.900 469.48 0.0154 0.998
150 499.90 372.05 0.118 0.900 520.83 0.0108 0.995
Tab.1  
Metal ion species Langmuir Freundlich Temkin
qmax
/(mg·g-1)
KL
/(L?mg-1)
R2 KF
/(mg·g-1(L·mg-1)1/n)
n R2 KT
/(L·g-1)
B R2
Cu(II) 124.95 0.172 0.994 43.66 3.65 0.897 2.57 25.70 0.908
Cr(VI) 523.56 1.39 0.998 366.49 10.46 0.969 16759.16 38.42 0.986
Tab.2  
CuT/(mg·L-1) Complex pK Cu,is ΔG(ads)i0/(kJ·mol-1) ΔG(lat)i0/(kJ·mol-1) ΔG(coul)i0/(kJ·mol-1) ΔG(solve)i0/(kJ·mol-1) ΔG(chem)i0/(kJ·mol-1)
150 SOCu+ −8.20 −46.76 9.26 2.72 8.83 −67.57
125 SOCu+ −8.36 −47.73 7.84 2.72 8.83 −67.12
100 SOCu+ −8.58 −48.96 6.49 2.72 8.83 −67.00
75 SOCu+ −8.86 −50.58 5.04 2.72 8.83 −67.18
50 SOCu+ −9.22 −52.59 3.38 2.72 8.83 −67.52
150 SOCu(OH) −10.97 −62.61 9.34 1.36 8.83 −35.37
125 SOCu(OH) −11.14 −63.58 7.91 1.36 8.83 −35.47
100 SOCu(OH) −11.36 −64.83 6.54 1.36 8.83 −36.02
75 SOCu(OH) −11.65 −66.47 5.09 1.36 8.83 −36.12
50 SOCu(OH) −12.00 −68.49 3.40 1.36 8.83 −35.10
150 SOCu(OH)2+ −15.60 −88.99 0 0 0 −55.99
Tab.3  
CrT/(mg·L-1) Complex pK Cr,i s ΔG(ads)i0/(kJ·mol-1) ΔG(lat)i0/(kJ·mol-1) ΔG(coul)i0/(kJ·mol-1) ΔG(solve)i0/(kJ·mol-1) ΔG(chem)i0/(kJ·mol-1)
150 SHCrO4 -6.31 -35.99 14.67 -1.36 0.21 -49.50
125 SHCrO4 -6.47 -36.89 13.19 -1.36 0.21 -48.93
100 SHCrO4 -6.68 -38.14 11.84 -1.36 0.21 -48.82
75 SHCrO4 -7.01 -39.97 10.41 -1.36 0.21 -49.23
50 SHCrO4 -7.47 -42.63 7.82 -1.36 0.21 -49.30
150 SCrO4 -8.23 -46.98 14.28 -2.72 0.88 -59.43
125 SCrO4 -8.39 -47.88 12.85 -2.72 0.88 -58.89
100 SCrO4 -8.60 -49.08 11.53 -2.72 0.88 -58.77
75 SCrO4 -8.91 -50.86 10.14 -2.72 0.88 -59.16
50 SCrO4 -9.37 -53.46 7.61 -2.72 0.88 -59.24
Tab.4  
Fig.7  
Fig.8  
Type of adsorbent Experimental conditions qmax /(mg·g-1) Ref.
Cu(II) Cr(VI)
MnPT Ambient temperature, pH= 25.5 121.5 790.2 This work
TEPA-NMPs Ambient temperature, pH= 24 116.8 370.37 [3]
FeSO4·7H2O/AlPO4 Room temperature, pH= 38 50.14 38.82 [37]
Bifunctionalized chitosan 25 °C, pH= 5.5 165.1 182.0 [38]
CNF/LDH Room temperature, pH= 48 219.6 341.2 [39]
CHIT/F-CNTs Room temperature, pH= 36 123.7 142.1 [40]
MF-PEI/CS2 sponges 30 °C, pH= 210 100 [4]
Malate–LDH 30 °C, pH= 210 118 [43]
P(TA-TEPA)-PAM-RGO 30 °C, pH= 411 394.32 [10]
H3PO4 activated oil-tea shell Room temperature, pH= 210 200.40 [8]
CS/ceria/Fe3O4 30 °C, pH= 39 315.40 [42]
Tab.5  
1 J Huang, Y Xu, X Zhang, Z Lei, C Chen, Y Deng, C Wang. Polyethylenimine and dithiocarbamate decorated melamine sponges for fast copper (II) ions removal from aqueous solution. Applied Surface Science, 2018, 445: 471–477
https://doi.org/10.1016/j.apsusc.2018.03.196
2 J Deng, Y Liu, S Liu, G Zeng, X Tan, B Huang, X Tang, S Wang, Q Hua, Z Yan. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 2017, 506: 355–364
https://doi.org/10.1016/j.jcis.2017.07.069
3 H Shen, S Pan, Y Zhang, X Huang, H Gong. A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chemical Engineering Journal, 2012, 183: 180–191
https://doi.org/10.1016/j.cej.2011.12.055
4 Z Feng, N Chen, C Feng, Y Gao. Mechanisms of Cr(VI) removal by FeCl3-modified lotus stem-based biochar (FeCl3@LS-BC) using mass-balance and functional group expressions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2018, 551: 17–24
https://doi.org/10.1016/j.colsurfa.2018.04.054
5 H W Kwak, K H Lee. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere, 2018, 207: 507–516
https://doi.org/10.1016/j.chemosphere.2018.04.158
6 C Ying, K Ma, J Wang, G Yu, X Zhu, W Zhang. Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate. Materials Research Bulletin, 2018, 101: 56–60
https://doi.org/10.1016/j.materresbull.2018.01.013
7 X Xiao, B Chen, Z Chen, L Zhu, J L Schnoor. Insight into multiple and multi-level structures of biochars and their potential environmental applications: a critical review. Environmental Science & Technology, 2018, 52(9): 5027–5047
https://doi.org/10.1021/acs.est.7b06487
8 L Wang, D Hu, X Kong, J Liu, X Li, K Zhou, H Zhao, C Zhou. Anionic polypeptide poly (g-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chemical Engineering Journal, 2018, 346: 38–49
https://doi.org/10.1016/j.cej.2018.03.084
9 Z Zhang, T Gao, S Si, Q Liu, Y Wu, G Zhou. One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chemical Engineering Journal, 2018, 343: 207–216
https://doi.org/10.1016/j.cej.2018.02.126
10 X Li, Z Wang, J Ning, M Gao, W Jiang, Z Zhou, G Li. Preparation and characterization of a novel polyethyleneimine cation-modified persimmon tannin bioadsorbent for anionic dye adsorption. Journal of Environmental Management, 2018, 217: 305–314
https://doi.org/10.1016/j.jenvman.2018.03.107
11 Y Chen, K Ma, J Wang, Y Gao, X Zhu, W Zhang. Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate. Materials Research Bulletin, 2018, 101: 56–60
https://doi.org/10.1016/j.materresbull.2018.01.013
12 H Ejima, J J Richardson, K Liang, J P Best, M P van Koeverden, G K Such, J W Cui, F Caruso. One-step assembly of coordination complexes for versatile film and particle engineering. Science, 2013, 341(6142): 154–157
https://doi.org/10.1126/science.1237265
13 Q Y Chen, J Z Chen, Y Y Zhou, C Song, Q H Tian, J L Xu, C P Wong. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Applied Surface Science, 2018, 440: 1027–1036
https://doi.org/10.1016/j.apsusc.2018.01.224
14 R Chen, J Yu, X J Wei. Hierarchically porous MnO2 microspheres with enhanced adsorption performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11682–11690
https://doi.org/10.1039/c3ta12589k
15 S Wang, J Zhang, W Cai, X Shao. Titanium dioxide as an adsorbent to enhance the detection ability of near-infrared diffuse reflectance spectroscopy. Chinese Chemical Letters, 2019, 30(5): 1024–1026
https://doi.org/10.1016/j.cclet.2019.01.005
16 X Qian, J Yang, Z Fei, Q Liu, X Qiao. A simple strategy to improve PEI dispersion on MCM-48 with long-Alkyl chains template for efficient CO2 adsorption. Industrial & Engineering Chemistry Research, 2019, 58(25): 10975–10983
https://doi.org/10.1021/acs.iecr.9b00545
17 N Díez, G A Ferrero, M Sevilla, A B Fuertes. A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(23): 14280–14290
https://doi.org/10.1039/C9TA01712G
18 M Yurtsever, L I A Sengi. Biosorption of Pb(II) ions by modified quebracho tannin resin. Journal of Hazardous Materials, 2009, 163(1): 58–64
https://doi.org/10.1016/j.jhazmat.2008.06.077
19 C Zhao, H Zheng, Y Sun, B Liu, Y Zhou, Y Liu, X Zheng. Fabrication of tannin-based dithiocarbamate biosorbent and its application for Ni(II) ion removal. Water, Air, and Soil Pollution, 2017, 228(11): 409
https://doi.org/10.1007/s11270-017-3593-0
20 H A Bacelo, S C Santos, C M Botelho. Tannin-based biosorbents for environmental applications—a review. Chemical Engineering Journal, 2016, 303: 575–587
https://doi.org/10.1016/j.cej.2016.06.044
21 A Wagner, A M Ferraria, A M Rego, M Mateus, A M Azevedo. Purification of monoclonal antibodies in a stirred cell with polyethyleneimine-modified polyethersulfone ultrafiltration membrane. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2019, 94(11): 3548–3558
https://doi.org/10.1002/jctb.6157
22 V P Dinh, N C Le, L A Tuyen, N Q Hung, V D Nguyen, N T Nguyen. Insight into adsorption mechanism of lead(II) from aqueous solution by chitosan loaded MnO2 nanoparticles. Materials Chemistry and Physics, 2018, 207: 294–302
https://doi.org/10.1016/j.matchemphys.2017.12.071
23 Y Zhang, C Liu, B Xu, F Qi, W Chu. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: combination of adsorption and catalysis oxidation. Applied Catalysis B: Environmental, 2016, 199: 447–457
https://doi.org/10.1016/j.apcatb.2016.06.003
24 H Y Son, H Jun, K R Kim, C A Hong, Y S Nam. Tannin-mediated assembly of gold-titanium oxide hybrid nanoparticles for plasmonic photochemical applications. Journal of Industrial and Engineering Chemistry, 2018, 63: 420–425
https://doi.org/10.1016/j.jiec.2018.03.002
25 L Li, F Wang, Y Lv, J Liu, D Zhang, Z Shao. Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Applied Clay Science, 2018, 161: 225–234
https://doi.org/10.1016/j.clay.2018.04.002
26 M Lv, L Yan, C Liu, C Su, Q Zhou, X Zhang, Y Lan, Y Zheng, L Lai, X Liu, Z Ye. Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye endocrine-disruptor pharmaceutical and metal ion. Chemical Engineering Journal, 2018, 349: 791–799
https://doi.org/10.1016/j.cej.2018.04.153
27 S Ali, L Chen, Z Li, T Zhang, L Rui, S U H Bakhtiar, X Leng, F Yuan, X Niu, Y Zhu. Cux-Nb1.1‒x(x = 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2018, 236: 25–35
https://doi.org/10.1016/j.apcatb.2018.05.014
28 O Akhavan, R Azimirad, S Safa, E J Hasani. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. Journal of Materials Chemistry, 2011, 21(26): 9634–9640
https://doi.org/10.1039/c0jm04364h
29 A A Alqadami, N Mu, M A Abdalla, T Ahamad, Z A Alothman, S M Alsehri, A A Ghfar. Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. Journal of Cleaner Production, 2017, 156: 426–436
https://doi.org/10.1016/j.jclepro.2017.04.085
30 M Jović, M Šljivić-Ivanović, S Dimović, J Marković, I J G Smičiklas. Sorption and mobility of Co(II) in relation to soil properties. Geoderma, 2017, 297: 38–47
https://doi.org/10.1016/j.geoderma.2017.03.006
31 F Ke, J Jiang, Y Li, J Liang, X Wan, S Ko. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres. Applied Surface Science, 2017, 413: 266–274
https://doi.org/10.1016/j.apsusc.2017.03.303
32 M J Aghagoli, M H Beyki, F Shemirani. Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples. Food Chemistry, 2017, 223: 8–15
https://doi.org/10.1016/j.foodchem.2016.12.023
33 B Alyuz, S Veli. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 2009, 167(1–3): 482–488
https://doi.org/10.1016/j.jhazmat.2009.01.006
34 S W Park, C P Huang. The surface acidity of hydrous CdS(s). Journal of Colloid and Interface Science, 1987, 117(2): 431–441
https://doi.org/10.1016/0021-9797(87)90403-6
35 C H Weng, C P Huang, H E Allen, P B Leavens, P F Sanders. Chemical interactions between Cr(VI) and hydrous concrete particles. Environmental Science & Technology, 1996, 30(2): 371–376
https://doi.org/10.1021/es9402967
36 C H Weng, C Huang, H Allen, P F Sanders. Cr(VI) adsorption onto hydrous concrete particles from groundwater. Journal of Environmental Engineering, 2001, 127(12): 1124–1131
https://doi.org/10.1061/(ASCE)0733-9372(2001)127:12(1124)
37 M Gan, S Sun, Z Zheng, H Tang, J Sheng, J Zhu, X Liu. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic schwertmannite. Applied Surface Science, 2015, 356: 986–997
https://doi.org/10.1016/j.apsusc.2015.08.200
38 A L D S L Moreira, A D S Pereira, M G Speziali, K M Novack, L V A Gurgel, L F Gil. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu(II) and Cr(VI) from aqueous solution. Carbohydrate Polymers, 2018, 201: 218–227
https://doi.org/10.1016/j.carbpol.2018.08.055
39 S Yu, Y Liu, Y Ai, X Wang, R Zhang, Z Chen, Z Chen, G Zhao, X Wang. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environmental Pollution, 2018, 242: 1–11
https://doi.org/10.1016/j.envpol.2018.06.031
40 P Hao, X Ma, J Xie, F Lei, L Li, W Zhu, X Cheng, G Cui, B Tang. Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Science China. Chemistry, 2018, 61(7): 797–805
https://doi.org/10.1007/s11426-017-8215-7
41 C H Weng. Modeling Pb(II) adsorption onto sandy loam soil. Journal of Colloid and Interface Science, 2004, 272(2): 262–270
https://doi.org/10.1016/j.jcis.2003.11.051
42 M Farokhi, A Parvareh, M K Moraveji. Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems. Environmental Science and Pollution Research International, 2018, 25(27): 27059–27073
https://doi.org/10.1007/s11356-018-2594-x
43 H N Tran, C C Lin, S H Woo, H P Chao. Efficient removal of copper and lead by Mg/Al layered double hydroxides intercalated with organic acid anions: adsorption kinetics, isotherms, and thermodynamics. Applied Clay Science, 2018, 154: 17–27
https://doi.org/10.1016/j.clay.2017.12.033
[1] FCE-20018-OF-DX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed