Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 654-665   https://doi.org/10.1007/s11705-020-1973-2
  本期目录
Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase
Jingbin Wen1, Kuiyi You1,2(), Minjuan Chen1, Jian Jian3, Fangfang Zhao1, Pingle Liu1,2, Qiuhong Ai1,2, He’an Luo1,2()
1. School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
2. National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
3. School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
 全文: PDF(1382 KB)   HTML
Abstract

In this work, a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method. The physicochemical properties of mesoporous silicon sulfonic acid catalysts have been systematically characterized using various techniques. The results demonstrate that sulfonic acid groups have been grafted on silicic acid by forming a new chemical bond (Si–O–S). The mesoporous silicon sulfonic acid exhibits excellent catalytic performance and stability in the vapor phase hydroamination reaction of cyclohexene with cyclohexylamine. Cyclohexene conversion of 61% and 97% selectivity to dicyclohexylamine was maintained after running the reaction for over 350 h at 280 °C. The developed mesoporous silicon sulfonic acid catalyst shows advantages of low cost, superior acid site accessibility, and long term reactivity stability. Moreover, a possible catalytic hydroamination reaction mechanism over silicon sulfonic acid was suggested. It has been demonstrated that the sulfonic acid groups of the catalyst play an important role in the hydroamination. The present work provides a simple, efficient, and environmentally friendly method for the hydroamination of cyclohexene to valuable dicyclohexylamine, which also shows important industrial application prospects.

Key wordsmesoporous silicon sulfonic acid    catalytic hydroamination    cyclohexene    dicyclohexylamine    vapor phase
收稿日期: 2020-03-29      出版日期: 2021-05-10
Corresponding Author(s): Kuiyi You,He’an Luo   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 654-665.
Jingbin Wen, Kuiyi You, Minjuan Chen, Jian Jian, Fangfang Zhao, Pingle Liu, Qiuhong Ai, He’an Luo. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase. Front. Chem. Sci. Eng., 2021, 15(3): 654-665.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1973-2
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/654
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Catalyst Conversion of cyclohexene/% Selectivity/%
DCHA CCA
None 0 0 0
HZSM-5 10 87 13
HY 8 83 17
g-Al2O3 33 78 22
TiO2 26 76 24
Silica gel 31 82 18
20%FeCl3/SiO2 54 92 8
20%ZnCl2/SiO2 53 86 14
Nafion-H 60 91 9
Amberlyst-15 54 89 11
SA 27 81 19
SSA 68 97 3
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Sample Surface area/(m2·g–1) Pore volume/(cm3·g–1) Pore diameter/nm Total acid amount/(mmol·g–1)
SA 293 0.90 8.71 0.08
Fresh SSA 286 0.88 8.68 0.82
Spent SSA 258 0.75 8.62 0.77
Regenerated SSA a) 279 0.87 8.67 0.81
Tab.2  
Fig.12  
Fig.13  
Fig.14  
Sample S% Si%
Fresh SSA 2.6 33.5
Spent SSA 2.5 33.5
Tab.3  
Fig.15  
1 J D Talati, G A Patel. Amines as corrosion inhibitors for aluminium-manganese alloy in phosphoric acid. British Corrosion Journal, 1974, 9(3): 181–184
https://doi.org/10.1179/000705974798321260
2 C Monticelli, A Frignani, G Trabanelli. Corrosion inhibition of steel in chloride-containing alkaline solutions. Journal of Applied Electrochemistry, 2002, 32(5): 527–535
https://doi.org/10.1023/A:1016507713022
3 L Eisenhuth, H G Zengel, M Bergfeld. Process for the preparation of thiuram disulfides. US Patent, 4 459 424 A, 1984-07-10
4 N Yutronic, V Manríquez, P Jara, O Wittke, G González. Dicyclohexylamine-thiourea clathrate. Supramolecular Chemistry, 2001, 12(4): 397–403
https://doi.org/10.1080/10610270108027471
5 T S Carswell, H L Morrill. Cyclohexylamine and dicyclohexylamine. Industrial & Engineering Chemistry, 1937, 29(11): 1247–1251
https://doi.org/10.1021/ie50335a011
6 G Darsow, R Langer. Method for producing variable mixtures of cyclohexylamine and dicyclohexylamine. US Patent, 6 335 470 B1, 2002-01-01
7 O Immel, G Darsow, H Waldmann, G M Petruck. Process for the preparation of a mixture of cyclohexylamine and dicyclohexylamine using a supported noble metal catalyst. US Patent, 5 322 965 A, 1994-06-21
8 P Rubio-Marqués, A Leyva-Pérez, A Corma. A bifunctional palladium/acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes. Chemical Communications, 2013, 49(74): 8160–8162
https://doi.org/10.1039/c3cc44064h
9 M Pies, F Helmut. Process for the preparation of dicyclohexylamine. EP Patent, 0 513 640 A1, 1992-11-19
10 M F H Van. Process for making dicyclohexylamine. GB Patent, 1 235 443 A, 1971-06-16
11 R M Robinson, W C Braaten. Dicyclohexylamine process. US Patent, 3 154 580 A, 1964-10-27
12 M Beller, H Trauthwein, M Eichberger, C Breindl, J Herwig, T Müller, O Thiel. The first rhodium-catalyzed anti-markovnikov hydroamination: studies on hydroamination and oxidative amination of aromatic olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(4): 1306–1319
https://doi.org/10.1002/(SICI)1521-3765(19990401)5:4<1306::AID-CHEM1306>3.0.CO;2-4
13 J L McBee, A T Bell, T D Tilley. Mechanistic studies of the hydroamination of norbornene with electrophilic platinum complexes: the role of proton transfer. Journal of the American Chemical Society, 2008, 130(49): 16562–16571
https://doi.org/10.1021/ja8030104
14 M Rodriguez-Zubiri, S Anguille, J J Brunet, J C Daran. Pt-catalysed intermolecular hydroamination of non-activated olefins using a novel family of catalysts: arbuzov-type phosphorus metal complexes. Journal of Molecular Catalysis A Chemical, 2013, 379: 103–111
https://doi.org/10.1016/j.molcata.2013.07.020
15 J G Taylor, N Whittall, K K Hii. Copper-catalyzed intermolecular hydroamination of alkenes. Organic Letters, 2006, 8(16): 3561–3564
https://doi.org/10.1021/ol061355b
16 S Ichikawa, S Zhu, S L Buchwald. A modified system for the synthesis of enantioenriched N-arylamines through copper-catalyzed hydroamination. Angewandte Chemie International Edition, 2018, 57(28): 8714–8718
https://doi.org/10.1002/anie.201803026
17 S Hong, T J Marks. Organolanthanide-catalyzed hydroamination. Accounts of Chemical Research, 2004, 37(9): 673–686
https://doi.org/10.1021/ar040051r
18 R J Schlott, J C Falk, K W Narducy. Lithium amide catalyzed amine-olefin addition reactions. Journal of Organic Chemistry, 1972, 37(26): 4243–4245
https://doi.org/10.1021/jo00799a003
19 V Khedkar, A Tillack, C Benisch, J P Melder, M Beller. Base-catalyzed hydroamination of ethylene with diethylamine. Journal of Molecular Catalysis A Chemical, 2005, 241(1-2): 175–183
https://doi.org/10.1016/j.molcata.2005.06.068
20 K Eller, U Muller, R Kummer, P Stops. Preparation of amines from olefins over zeolites of the type PSH-3, MCM-22, SSZ-25 or mixtures thereof. US Patent, 5 900 508 A, 1999-05-04
21 K Eller, R Kummer. Preparation of amines from olefins on zeolites of the MCM-49 or MCM-56 type. US Patent, 5 840 988 A, 1998-11-24
22 M Deeba. Amination of olefins using organic acid catalysts. US Patent, 4 536 602 A, 1985-08-20
23 B Schlummer, J F Hartwig. Bronsted acid-catalyzed intramolecular hydroamination of protected alkenylamines. Synthesis of pyrrolidines and piperidines. Organic Letters, 2002, 4(9): 1471–1474
https://doi.org/10.1021/ol025659j
24 D C Rosenfeld, S Shashank, A Takemiya, U Masaru, J F Hartwig. Hydroamination and hydroalkoxylation catalyzed by triflic acid. Parallels to reactions initiated with metal triflates. Organic Letters, 2006, 8(19): 4179–4182
https://doi.org/10.1021/ol061174+
25 L Yang, L W Xu, C G Xia. Heteropoly acids: a green and efficient heterogeneous Brønsted acidic catalyst for the intermolecular hydroamination of olefins. Tetrahedron Letters, 2008, 49(18): 2882–2885
https://doi.org/10.1016/j.tetlet.2008.03.034
26 X Cheng, Y Xia, H Wei, B Xu, C Zhang, Y Li, G Qian, X Zhang, K Li, W Li. Lewis acid catalyzed intermolecular olefin hydroamination: scope, limitation, and mechanism. European Journal of Organic Chemistry, 2008, 2008(11): 1929–1936
https://doi.org/10.1002/ejoc.200701080
27 E P Ng, S P Law, R R Mukti, J C Juan, F Adam. Hydroamination of cyclohexene enhanced by ZnCl2 nanoparticles supported on chiral mesoporous silica. Chemical Engineering Journal, 2014, 243: 99–107
https://doi.org/10.1016/j.cej.2013.12.090
28 E P Ng, S P Law, R R Mukti, F Adam. Metal chlorides supported on chiral mesoporous silica (MClx/CMS) as highly active Lewis acid catalyst for the selective hydroamination of cyclohexene. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1435–1442
https://doi.org/10.1016/j.jtice.2013.12.011
29 P Salehi, M Ali Zolfigol, F Shirini, M Baghbanzadeh. Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 2006, 10(17): 2171–2189
https://doi.org/10.2174/138527206778742650
30 P Salehi, M Dabiri, M Ali Zolfigol, M A B Fard. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, 2003, 44(14): 2889–2891
https://doi.org/10.1016/S0040-4039(03)00436-2
31 M Ali Zolfigol, B F Mirjalili, A Bamoniri, M A K Zarchi, A Zarei, L Khazdooz, J Noei. Nitration of aromatic compounds on silica sulfuric acid. Bulletin of the Korean Chemical Society, 2004, 25(9): 1414–1416
https://doi.org/10.5012/bkcs.2004.25.9.1414
32 A Shaabani, K Soleimani, A Bazgir. Silica sulfuric acid catalysis the oxidation of organic compounds with sodium bromate. Synthetic Communications, 2004, 34(18): 3303–3315
https://doi.org/10.1081/SCC-200030562
33 A Shaabani, A H Rezayan. Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catalysis Communications, 2007, 8(7): 1112–1116
https://doi.org/10.1016/j.catcom.2006.10.033
34 F Shirini, M Ali Zolfigol, K Mohammadi. Acetylation and formylation of alcohols in the presence of silica sulfuric acid. Phosphorus, Sulfur, and Silicon and the Related Elements, 2003, 178(7): 1617–1621
https://doi.org/10.1080/10426500307877
35 Z Tai, M A Isaacs, C M A Parlett, A F Lee, K Wilson. High activity magnetic core-mesoporous shell sulfonicacid silica nanoparticles for carboxylic acid esterification. Catalysis Communications, 2017, 92: 56–60
https://doi.org/10.1016/j.catcom.2017.01.004
36 M Ali Zolfigol. Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 2001, 57(46): 9509–9511
https://doi.org/10.1016/S0040-4020(01)00960-7
37 A R Modarresi-Alam, M Nasrollahzadeh, F Khamooshi. Solvent-free preparation of primary carbamates using silica sulfuric acid as an efficient reagent. Archive for Organic Chemistry, 2007, 16: 238–245
38 Y L Hu, D Fang, D S Li. Novel and efficient heterogeneous methylbenzenesulfonic acid-based ionic liquid supported on silica gel for greener Fischer indole synthesis. Catalysis Letters, 2016, 146(5): 968–976
https://doi.org/10.1007/s10562-016-1721-x
39 S Liu, K You, J Jian, F Zhao, W Zhong, D Yin, P Liu, Q Ai, H A Luo. Mesoporous silica gel as an effective and eco-friendly catalyst for highly selective preparation of cyclohexanone oxime by vapor phase oxidation of cyclohexylamine with air. Journal of Catalysis, 2016, 338: 239–249
https://doi.org/10.1016/j.jcat.2016.03.008
40 J Fujiki, K Yogo, E Furuya. Role of silanol groups on silica gel on adsorption of benzothiophene and naphthalene. Fuel, 2018, 215: 463–467
https://doi.org/10.1016/j.fuel.2017.11.070
41 B Zeynizadeh, S Rahmani, E Eghbali. Anchored sulfonic acid on silica-layered NiFe2O4: a magnetically reusable nanocatalyst for Hantzsch synthesis of 1,4-dihydropyridines. Polyhedron, 2019, 168: 57–66
https://doi.org/10.1016/j.poly.2019.04.035
42 B B Munavalli, M Y Kariduraganavar. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application. Electrochimica Acta, 2019, 296: 294–307
https://doi.org/10.1016/j.electacta.2018.11.056
43 P Zhang, H Wu, M Fan, W Sun, P Jiang, Y Dong. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production. Fuel, 2019, 235: 426–432
https://doi.org/10.1016/j.fuel.2018.08.029
44 Y Zhang, H Wang, N Sun, R Chi. Experimental and computational study on mechanism of dichromate adsorption by ionic liquid-bonded silica gel. Separation and Purification Technology, 2018, 205: 84–93
https://doi.org/10.1016/j.seppur.2018.04.084
45 M Casu, A Lai, A Musinu, G Piccaluga, S Solinas, S Bruni, F Cariati, E Beretta. XRD, TEM, IR and 29Si MAS NMR characterization of NiO-SiO2 nanocomposites. Journal of Materials Science, 2001, 36(15): 3731–3735
https://doi.org/10.1023/A:1017973716834
46 I K Battisha, A El Beyally, S A El Mongy, A M Nahrawi. Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol-gel route. Journal of Sol-Gel Science and Technology, 2007, 41(2): 129–137
https://doi.org/10.1007/s10971-006-0520-z
47 C Caetano, M Caiado, J Farinha, I Fonseca, A Ramos, J Vital, J Castanheiro. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chemical Engineering Journal, 2013, 230: 567–572
https://doi.org/10.1016/j.cej.2013.06.050
48 J J Martínez, E Nope, H Rojas, M H Brijaldo, F Passos, G Romanelli. Reductive amination of furfural over Me/SiO2-SO3H (Me: Pt, Ir, Au) catalysts. Journal of Molecular Catalysis A Chemical, 2014, 392: 235–240
https://doi.org/10.1016/j.molcata.2014.05.014
49 J Jian, K You, Q Luo, H Gao, F Zhao, P Liu, Q Ai, H A Luo. Supported Ni-Al-VPO/MCM-41 as efficient and stable catalysts for highly selective preparation of adipic acid from cyclohexane with NO2. Industrial & Engineering Chemistry Research, 2016, 55(13): 3729–3735
https://doi.org/10.1021/acs.iecr.6b00008
50 A S Al Dughaither, H de Lasa. HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics. Industrial & Engineering Chemistry Research, 2014, 53(40): 15303–15316
https://doi.org/10.1021/ie4039532
51 J Wen, K You, X Liu, J Jian, F Zhao, P Liu, Q Ai, H A Luo. Highly selective one-step catalytic amination of cyclohexene to cyclohexylamine over HZSM-5. Catalysis Communications, 2019, 127: 64–68
https://doi.org/10.1016/j.catcom.2019.05.007
52 K You, R Deng, J Jian, P Liu, Q Ai, H A H Luo. 3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene. RSC Advances, 2015, 5(89): 73083–73090
https://doi.org/10.1039/C5RA15679C
53 X S Zhao, M G Q Lu, C Song. Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene. Journal of Molecular Catalysis A Chemical, 2003, 191(1): 67–74
https://doi.org/10.1016/S1381-1169(02)00366-7
54 B Tyagi, M K Mishra, R V Jasra. Solvent free synthesis of 7-isopropyl-1,1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst. Journal of Molecular Catalysis A Chemical, 2009, 301(1-2): 67–78
https://doi.org/10.1016/j.molcata.2008.11.011
55 F Zhou, J Tang, Z Fei, X Zhou, X Chen, M Cui, X Qiao. Efficient cyclohexyl acrylate production by direct addition of acrylic acid and cyclohexene over SBA-15-SO3H. Journal of Porous Materials, 2014, 21(2): 149–155
https://doi.org/10.1007/s10934-013-9759-2
56 S Zhou, K You, H Gao, R Deng, F Zhao, P Liu, Q Ai, H A Luo. Mesoporous silica-immobilized FeCl3 as a highly efficient and recyclable catalyst for the nitration of benzene with NO2 to nitrobenzene. Molecular Catalysis, 2017, 433: 91–99
https://doi.org/10.1016/j.mcat.2016.12.001
57 T Jiang, J Cheng, W Liu, L Fu, X Zhou, Q Zhao, H Yin. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol. Journal of Solid State Chemistry, 2014, 218: 71–80
https://doi.org/10.1016/j.jssc.2014.06.021
58 B Li, D Chen, X Zhang, W Dong, B Zhao. A convenient method to immobilize 4-dimethylaminopyridine on silica gel as a heterogeneous nucleophilic catalyst for acylation. Chemical Papers, 2018, 72(6): 1339–1345
https://doi.org/10.1007/s11696-018-0381-2
59 R Deng, K You, L Yi, F Zhao, J Jian, Z Chen, P Liu, Q Ai, H A Luo. Solvent-free, low-temperature, highly efficient catalytic nitration of toluene with NO2 promoted by molecular oxygen over immobilized AlCl3-SiO2. Industrial & Engineering Chemistry Research, 2018, 57(39): 12993–13000
https://doi.org/10.1021/acs.iecr.8b02786
60 X S Zhao, G Q Lu, A K Whittaker, G J Millar, H Y Zhu. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. Journal of Physical Chemistry B, 1997, 101(33): 6525–6531
https://doi.org/10.1021/jp971366+
61 C J Brinker, D R Tallant, E P Roth, C S Ashley. Sol-gel transition in simple silicates: III. Structural studies during densification. Journal of Non-Crystalline Solids, 1986, 82(1-3): 117–126
https://doi.org/10.1016/0022-3093(86)90119-5
62 C C Ke, X Li, Q Shen, S G Qu, Z G Shao, B L Yi. Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/SiO2 composite membrane. International Journal of Hydrogen Energy, 2011, 36(5): 3606–3613
https://doi.org/10.1016/j.ijhydene.2010.12.030
63 J Long, P Wang, W Wang, Y Li, G. Yin Nickel/brønsted acid-catalyzed chemo-and enantioselective intermolecular hydroamination of conjugated dienes.  iScience, 2019, 22: 369–379
64 O Jimenez, T E Müller, W Schwieger, J A Lercher. Hydroamination of 1,3-cyclohexadiene with aryl amines catalyzed with acidic form zeolites. Journal of Catalysis, 2006, 239(1): 42–50
https://doi.org/10.1016/j.jcat.2006.01.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed