Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (4): 854-871   https://doi.org/10.1007/s11705-020-1980-3
  本期目录
A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals
Chuhan Fu1, Zhuoxi Li2(), Zengran Sun1, Shaoqu Xie1()
1. The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
2. School of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF(625 KB)   HTML
Abstract

Biofuels and bio-based chemicals are getting more and more attention because of their sustainable and renewable properties and wide industrial applications. However, the low concentrations of the targeted products in their fermentation broths, the complicated components of the broths and the high energy-intensive separation and purification process hinder the competitiveness of biofuels and biochemicals with the petro-based ones. Hence, the production and the separation of biofuels and bio-based chemicals in energy-saving, low-cost and greenness ways become hot topics nowadays. This review introduces the separation technologies (salting-out extraction, salting-out, sugaring-out extraction, and sugaring-out) that extract biobutanol, 1,3-propanediol, 2,3-butanediol, acetoin, organic acids and other bio-based chemicals from fermentation broths/aqueous solutions. Salting-out/sugaring-out extraction and salting-out/sugaring-out technologies display the high separating efficiency and the high targeted product yields. In addition, they are easy to operate and require low cost for separating products. Hence, they are the effective and potential technologies for separating targeted products in the wide industrial applications. The successful research into the salting-out/sugaring-out and salting-out/sugaring-out extraction not only affords biofuels and biochemical but also opens a door for the development of novel separation methods.

Key wordssalting-out, sugaring-out, extraction    biofuels, biochemicals, application
收稿日期: 2020-05-04      出版日期: 2021-06-04
Corresponding Author(s): Zhuoxi Li,Shaoqu Xie   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 854-871.
Chuhan Fu, Zhuoxi Li, Zengran Sun, Shaoqu Xie. A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng., 2021, 15(4): 854-871.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1980-3
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I4/854
Type Extractant/salting-out agent Target products Ref.
1 Polyethylene glycol (4000)/potassium phosphate Cphycocyanin [37]
2 Ethanol/dipotassium hydrogen phosphate (K2HPO4)
Acetone/K2HPO4
Lactic acid
Acetoin
[38]
[39]
3 Pentanol/sodium phosphate 1,3-Propanediol [40]
4 1-Butyl-3-methylimidazolium chloride/K2HPO4 Testosterone and epitestosterone [41]
Tab.1  
Fig.1  
SOE systems Type of fermentation broth Partition coefficient Recovery Removal Ref.
Cells Proteins
Cyclopentanol, n-pentaldehyde, tertiary pentanol, and ADOL85NF+ CaCl2, KCl, NaCl, CH3COOK, CH3COONa Simulated ABE fermentation broth [43]
41.7% Acetone+ 25% Na2CO3 Simulated ABE fermentation broth 55.71 98.38% [44]
39.6% Ethanol+ 25% Na2CO3 Simulated ABE fermentation broth 35.06 97.87% [44]
33% Acetone+ 30% Na2CO3 Unfiltered ABE fermentation broth 32.17 95.99% 99.92% 87.13% [44]
47.5% Ethanol+ 50% K2HPO4 Simulated ABE fermentation broth 25.03 96.87% [44]
40% Acetone+ 60% K2HPO4 Unfiltered ABE fermentation broth ~100% 99.86% 91.21% [44]
17.51% Acetone+ 21.44% K2HPO4 ABE fermentation broth 63.13 98.10% 99.12% 95.71% [45]
2-Ethyl-1-hexanol/cyclopentanol/2-methyl-2-butanol+ K4P2O7 Simulated isobutanol fermentation broth ~100% [47]
2-Ethyl-1-hexanol/cyclopentanol/2-methyl-2-butanol+ K2HPO4 Simulated isobutanol fermentation broth ~100% [47]
2-Ethyl-1-hexanol/cyclopentanol/2-methyl-2-butanol+ K3PO4 Simulated isobutanol fermentation broth ~100% [47]
2-Ethyl-1-hexanol/cyclopentanol/2-methyl-2-butanol+ K2CO3 Simulated isobutanol fermentation broth ~100% [47]
Tab.2  
Target products SOE systems Partition coefficient Recovery Removal Ref.
Cells Proteins
1,3-Propanediol 46% Ethanol+ (NH4)2SO4 (saturated) 4.77 93.7% 99.7% 79.0% [25]
35% Methanol+ K2HPO4 (saturated) 38.3 98.1% 99.85% 92.4% [29]
Ethanol+ 37.5% K2HPO4 10.86 90.30% [52]
28% Ethanol+ 34% K3PO4 33 97% [53]
Pentanol+ 0.4 g?L–1 Na3PO4 3.72 72% [40]
Pentanol+ 0.4 g?L–1 Na2SO4 2.52 65.6% [40]
Ethanol+ Na2CO3 97.9% 99.1% 81.9% [54]
1) 30% Isopropanol+ 30% K2CO3
2) 28% Ethanol
9.81 92.4% 100% 98.5% [55]
2,3-Butanediol 24% Ethanol+ 25% K2HPO4 28.34 98.13% 99.63% 85.9% [26]
21% Ethanol+ 17% K2HPO4 13.4 99% 89% [60]
32% Ethanol+ 16% (NH4)2SO4 7.1 91.7 99.7% 91.2% [72]
2-sec-Butyl phenol+ 10 wt-% K2HPO4 3.04 [58]
1-Butanol+ 10 wt-% K2HPO4 2.41 [58]
1-Butanol+ 10 wt-% K2HPO4 2.26 [36]
34% (w/w) 2-Propanol and 20% (w/w) (NH4)2SO4 9.9 93.7% 99% 85% [61]
Tetrahydrofurn+ K2CO3 92.2% [59]
Acetoin Ethyl acetate+ K2HPO4 (v/v= 2:1) 5.47 91.3% [64]
100 mL Ethyl acetate+ 20% ethanol+ 50% K2HPO4 18.5 95.3% [64]
40% 1-Propanol+ K4P2O7 (saturated) ~100% [65]
6% EOAB+ 38% K3PO4 40.54 92.7% [66]
Lactic acid 30.23% Ethanol+ 18.40% K2HPO4 2.26 87% [38]
30% Ethanol+ 14% K2HPO4 3.23 90.6% 100% 85.9% [69]
26% Methanol+ 25% K2HPO4 4.01 86% 100% 85.9% [69]
28% Ethanol+ 30% K2CO3 1.27 73.8% 100% 98.5% [55]
Succinic acid 30% Acetone+ 20% (NH4)2SO4 8.64 90.05% 99.03% 90.82% [70]
Butyric acid 26.7% Ethanol+ 20% NaH2PO4 106.2 99.5% [71]
Tab.3  
System Target products Ref.
Acetonitrile+ H2O+ LiCl, + NaCl, + KCl
Acetone+ H2O+ NaCl
2-Propanol+ H2O+ NaCl
Acetonitrile Acetone
2-Propanol
[79]
1-Methyl-2-pyrrolidone+ Na2CO3 + H2O
1-Methyl-2-pyrrolidone+ K2CO3 + H2O
Acetonitrile+ Na2CO3 + H2O
Acetonitrile+ K2CO3 + H2O
1-Methyl-2-pyrrolidone
Acetonitrile
[80]
H2O+ ethanol+ acetone+ NaCl Ethanol+ acetone [81]
2,3-Butanediol+ H2O+ K2CO3 2,3-Butanediol [82]
NaCl+ H2O+ acetone, acetonitrile, 1,4-dioxane, tetrahydrofuran, 1-propanol, or 2-propanol Acetone, acetonitrile, 1,4-dioxane, tetrahydrofuran, 1-propanol, or 2-propanol [83]
Tab.4  
Fig.2  
Type of ABE fermentation broth Type of salts Water content of the organic phase Recovery/% Ref.
Acetone Butanol Ethanol
Concentrated a) K2CO3 6.83% 99 98.3 98 [84]
Concentrated a) K2HPO4 5.50% ~100 ~100 ~100 [91]
Concentrated a) K3PO4 7.11% ~100 ~100 ~100 [92]
Concentrated a) K4P2O7 5.21% ~100 ~100 ~100 [93]
Dilute model solution b) K2CO3 5.59% 70.2 93.7 60.8 [94]
Dilute model solution b) K2HPO4 10.38% 96.1 100 85.6 [94]
Dilute model solution b) K3PO4 7.19% 89.4 100 72.2 [95]
Dilute c) K3PO4 7.0% 72.9 100 42.1 [95]
Dilute model solution b) K4P2O7 7.76% 84.1 100 55.9 [96]
Tab.5  
Fig.3  
Target products Salts Partition coefficient Recovery/% Water content of the organic phase/% Ref.
1,3-Propanediol
150 g?L–1 50% K2CO3 22.6 20.5 [100]
150 g?L–1 50% K3PO4 65.1 28.3 [100]
150 g?L–1 55% K4P2O7 300.9 95.7 17.3 [100]
2,3-Butanediol
50 g?L–1 50% K2HPO4 67.8 30.6 [59]
50 g?L–1 50% K3PO4 54.5 18.2 [59]
50 g?L–1 50% K2CO3 44.9 16.6 [59]
50 g?L–1 50% KF 36.0 23.8 [59]
100 g?L–1 50% K2CO3 236.6 94.9 15.72 [27]
100 g?L–1 50% K3PO4 723.6 97.5 22.5 [27]
100 g?L–1 50% K2HPO4 277.6 93.7 31.1 [27]
100 g?L–1 50% K4P2O7 1791.1 99.0 19.0 [27]
100 g?L–1 50.79% K2CO3 313 96.28 [101]
99.8 g?L–1 a) 67.9% K2CO3 94.6 [101]
Tab.6  
Target products Sugaring-out extraction systems Type of fermentation broth Partition coefficient Recovery References
Succinic acid 27% Glucose+ 40% t-butanol Synthetic fermentation broth 5.14 88.15% [33]
27% Glucose+ 40% t-butanol+ 9% (NH4)2SO4 Synthetic fermentation broth 89.55% [33]
30% Glucose+ 45% [Bmim]BF4 Simulated fermentation broth 2.53 75.96% [110]
30% Glucose+ 45% [Bmim]BF4 Filtered fermentation broth 73.71% [110]
30% Glucose+ 45% [Bmim]BF4 Unfiltered fermentation broth 72.53% [110]
Lactic aicd 12% Glucose+ 40% isopropanol Simulated fermentation broth 1.39 84.27% [112]
2,3-butanediol 30% Glucose+ 1.8% (NH4)2HPO4 + 100% t-butanol Filtered fermentation broth 75.6% [113]
Acetoin Glucose+ ethyl acetate (v/v= 1:2) Unfiltered fermentation broth 61.2% [114]
Tab.7  
Target products Type of sugar Type of system Initial concentration of sugars Concentration of target products References
Butanol Sucrose Concentrated ABE system 650 g?kg–1 64.52% [34]
Glucose Concentrated ABE system 500 g?kg–1 62.62% [34]
Ethanol Sucrose Concentrated ABE system 650 g?kg–1 5.60% [34]
Glucose Concentrated ABE system 500 g?kg–1 5.61% [34]
Acetone Sucrose Concentrated ABE system 650 g?kg–1 15.57% [34]
Glucose Concentrated ABE system 500 g?kg–1 15.05% [34]
Acetonitrile Glucose Acetonitrile aqueous solution 50 g?L–1 95.4% [119]
Xylose Acetonitrile aqueous solution 50 g?L–1 90.9% [119]
Arabinose Acetonitrile aqueous solution 40 g?L–1 94.9% [119]
Fructose Acetonitrile aqueous solution 50 g?L–1 89.1% [119]
Sucrose Acetonitrile aqueous solution 50 g?L–1 90.4% [119]
Tab.8  
1 G A Ratcliff. Unit operations of chemical engineering. Chemical Engineering Science, 1957, 6(6): 287
https://doi.org/10.1016/0009-2509(57)85034-9
2 D F Othmer, W S Bergen, N Shlechter, P F Bruins. Liquid-liquid extraction data. Industrial & Engineering Chemistry, 1945, 37(9): 890–894
https://doi.org/10.1021/ie50429a026
3 G T Tsao. Conversion of Biomass from Agriculture Into Useful Products: Final Report. 1978
4 J J Malinowski. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnology Techniques, 1999, 13(2): 127–130
https://doi.org/10.1023/A:1008858903613
5 E Ibáñez, J A Mendiola, M Castro Puyana. Supercritical fluid extraction. In: Encyclopedia of Food and Health. 1st ed. London: Academic Press, 2015, 227–233
6 J Benavides, M Rito Palomares, J A Asenjo. Aqueous two-phase systems. In: Comprehensive Biotechnology. 2nd ed. Amsterdam: Elsevier Science, 2011, 697–713
7 E Martinez-Guerra, V G Gude, A Mondala, W Holmes, R Hernandez. Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Applied Energy, 2014, 129: 354–363
https://doi.org/10.1016/j.apenergy.2014.04.112
8 D Leštan, C Luo, X Li. The use of chelating agents in the remediation of metal-contaminated soils: a review. Environmental Pollution, 2008, 153(1): 3–13
https://doi.org/10.1016/j.envpol.2007.11.015
9 B Dold. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 2003, 80(1): 55–68
https://doi.org/10.1016/S0375-6742(03)00182-1
10 P G Pietta. Flavonoids as antioxidants. Journal of Natural Products, 2000, 63(7): 1035–1042
https://doi.org/10.1021/np9904509
11 S Raja, V R Murty, V Thivaharan, V Rajasekar, V Ramesh. Aqueous two phase systems for the recovery of biomolecules: a review. Science and Technology, 2012, 1(1): 7–16
https://doi.org/10.5923/j.scit.20110101.02
12 M Iqbal, Y Tao, S Xie, Y Zhu, D Chen, X Wang, L Huang, D Peng, A Sattar, M A B Shabbir, H I Hussain, S Ahmed, Z Yuan. Aqueous two-phase system: an overview and advances in its applications. Biological Procedures Online, 2016, 18(1): 1–18
https://doi.org/10.1186/s12575-016-0048-8
13 G Brusotti, I Cesari, A Dentamaro, G Caccialanza, G Massolini. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87: 218–228
https://doi.org/10.1016/j.jpba.2013.03.007
14 J Benavides, O Aguilar, B H Lapizco Encinas, M Rito Palomares. Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies. Chemical Engineering & Technology, 2008, 31(6): 838–845
https://doi.org/10.1002/ceat.200800068
15 H Walter. Partitioning in aqueous two-phase systems: theory, methods, uses and application to biotechnology. Analytical Biochemistry, 1987, 161(1): 227
https://doi.org/10.1016/0003-2697(87)90679-8
16 A Orjuela, A J Yanez, L Peereboom, C T Lira, D J Miller. A novel process for recovery of fermentation-derived succinic acid. Separation and Purification Technology, 2011, 83(1): 31–37
https://doi.org/10.1016/j.seppur.2011.08.010
17 Y Ni, Z Sun. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 2009, 83(3): 415–423
https://doi.org/10.1007/s00253-009-2003-y
18 W J Groot, H S Soedjak, P B Donck, R G J M van der Lans, K C A M Luyben, J M K Timmer. Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction. Bioprocess Engineering, 1990, 5(5): 203–216
https://doi.org/10.1007/BF00376227
19 S Ghosh, R Vijayalakshmi, T Swaminathan. Evaluation of an alternative source of dextran as a phase forming polymer for aqueous two-phase extractive system. Biochemical Engineering Journal, 2004, 21(3): 241–252
https://doi.org/10.1016/j.bej.2004.07.005
20 J Y Dai, Y Q Sun, Z L Xiu. Separation of bio-based chemicals from fermentation broths by salting-out extraction. Engineering in Life Sciences, 2014, 14(2): 108–117
https://doi.org/10.1002/elsc.201200210
21 G B Frankforter, F C Frary. Equilibria in systems containing alcohols, salts and water, including a new method of alcohol analysis. Journal of Physical Chemistry, 1913, 17(5): 402–473
https://doi.org/10.1021/j150140a004
22 A Salabat. Liquid-liquid equilibrium in the ternary systems triethylene glycol+salts+water at different temperatures: experimental determination and correlation. Fluid Phase Equilibria, 2010, 288(12): 63–66
https://doi.org/10.1016/j.fluid.2009.10.020
23 D C Leggett, T F Jenkins, P H Miyares. Salting-out solvent extraction for preconcentration of neutral polar organic solutes from water. Analytical Chemistry, 1990, 62(13): 1355–1356
https://doi.org/10.1021/ac00212a029
24 S Xie, C Yi, X Qiu. Salting-out of acetone, 1-butanol, and ethanol from dilute aqueous solutions. AIChE Journal. American Institute of Chemical Engineers, 2015, 61(10): 3470–3478
https://doi.org/10.1002/aic.14872
25 Z Li, B Jiang, D Zhang, Z Xiu. Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths. Separation and Purification Technology, 2009, 66(3): 472–478
https://doi.org/10.1016/j.seppur.2009.02.009
26 B Jiang, Z G Li, J Y Dai, D J Zhang, Z L Xiu. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system. Process Biochemistry, 2009, 44(1): 112–117
https://doi.org/10.1016/j.procbio.2008.09.019
27 S Xie, Y Zhang, Y Zhou, Z Wang, C Yi, X Qiu. Salting-out of bio-based 2,3-butanediol from aqueous solutions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(1): 122–132
https://doi.org/10.1002/jctb.4999
28 S Xie, W Ji, Y Zhang, Y Zhou, Z Wang, C Yi, X Qiu. Biobutanol recovery from model solutions/fermentation broth using tripotassium phosphate. Biochemical Engineering Journal, 2016, 115: 85–92
https://doi.org/10.1016/j.bej.2016.08.010
29 Z Li, H Teng, Z Xiu. Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system. Process Biochemistry, 2011, 46(2): 586–591
https://doi.org/10.1016/j.procbio.2010.10.014
30 L A Jones, J B Prabel, J J Glennon, M F Copeland, R J Kavlock. Extraction of phenol and its metabolites from aqueous solution. Journal of Agricultural and Food Chemistry, 1993, 41(5): 735–741
https://doi.org/10.1021/jf00029a011
31 E N Lightfoot, J S Moscariello. Bioseparations. Biotechnology and Bioengineering, 2004, 87(3): 259–273
https://doi.org/10.1002/bit.20111
32 B Wang, T Ezejias, H Feng, H Blaschek. Sugaring-out: a novel phase separation and extraction system. Chemical Engineering Science, 2008, 63(9): 2595–2600
https://doi.org/10.1016/j.ces.2008.02.004
33 Y Sun, X Zhang, Y Zheng, L Yan, Z Xiu. Sugaring-out extraction combining crystallization for recovery of succinic acid. Separation and Purification Technology, 2019, 209: 972–983
https://doi.org/10.1016/j.seppur.2018.09.049
34 S Xie, S Zhang, X Qiu, C Yi, Y Hu, F Li, J Quan. Sugaring-out effects of sucrose and glucose on the liquid-liquid equilibria for the (water+acetone+1-butanol+ethanol) system. Journal of Chemical & Engineering Data, 2015, 60(8): 2434–2441
https://doi.org/10.1021/acs.jced.5b00302
35 Y S Jang, B Kim, J H Shin, Y J Choi, S Choi, C W Song, J Lee, H G Park, S Y Lee. Bio-based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 2012, 109(10): 2437–2459
https://doi.org/10.1002/bit.24599
36 S D Birajdar, S Rajagopalan, J S Sawant, S Padmanabhan. Continuous countercurrent liquid-liquid extraction method for the separation of 2,3-butanediol from fermentation broth using n-butanol and phosphate salt. Process Biochemistry, 2015, 50(9): 1449–1458
https://doi.org/10.1016/j.procbio.2015.05.016
37 G Patil, K S M S Raghavarao. Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 2007, 34(2): 156–164
https://doi.org/10.1016/j.bej.2006.11.026
38 Ö Aydoǧan, E Bayraktar, Ü Mehmetoǧlu. Aqueous two-phase extraction of lactic acid: optimization by response surface methodology. Separation Science and Technology, 2011, 46(7): 1164–1171
https://doi.org/10.1080/01496395.2010.550270
39 J Sun, B Rao, L Zhang, Y Shen, D Wei. Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system. Chemical Engineering Communications, 2012, 199(11): 1492–1503
https://doi.org/10.1080/00986445.2012.683901
40 H S Wu, Y J Wang. Salting-out effect on recovery of 1,3-propanediol from fermentation broth. Industrial & Engineering Chemistry Research, 2012, 51(33): 10930–10935
https://doi.org/10.1021/ie300404t
41 C He, S Li, H Liu, K Li, F Liu. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. Journal of Chromatography. A, 2005, 1082(2): 143–149
https://doi.org/10.1016/j.chroma.2005.05.065
42 S Kumar, J H Cho, J Park, I Moon. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines. Renewable & Sustainable Energy Reviews, 2013, 22: 46–72
https://doi.org/10.1016/j.rser.2013.01.017
43 J J Malinowski, A J Daugulis. Salt effects in extraction of ethanol, 1butanol and acetone from aqueous solutions. AIChE Journal. American Institute of Chemical Engineers, 1994, 40(9): 1459–1465
https://doi.org/10.1002/aic.690400905
44 Y Sun, Z Li, Z Xiu. Method for salting-out extraction of acetone and butanol from a fermentation broth. US Patent, 8,779,209, 2013-07-25
45 Y Sun, L Yan, H Fu, Z Xiu. Selection and optimization of a salting-out extraction system for recovery of biobutanol from fermentation broth. Engineering in Life Sciences, 2013, 13(5): 464–471
https://doi.org/10.1002/elsc.201300033
46 H Huang, H Liu, Y R Gan. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnology Advances, 2010, 28(5): 651–657
https://doi.org/10.1016/j.biotechadv.2010.05.015
47 C Yi, Y Zhang, S Xie, W Song, X Qiu. Salting-out extraction of bio-based isobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(2): 372–384
https://doi.org/10.1002/jctb.5365
48 S Ghosh, T Swaminathan. Optimization of the phase system composition of aqueous two-phaso system for extraction of 2,3-butanediol by theoretical formulation and using response surface methodology. Chemical and Biochemical Engineering Quarterly, 2004, 18(3): 263–271
49 W Sabra, C Groeger, A P Zeng. Microbial cell factories for diol production. In: Advances in Biochemical Engineering/Biotechnology. 1st ed. Berlin: Springer Science and Business Media Deutschland GmbH, 2016, 165–197
50 J V Kurian. A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. Journal of Polymers and the Environment, 2005, 13(2): 159–167
https://doi.org/10.1007/s10924-005-2947-7
51 A P Zeng, H Biebl. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, 2002, 74: 239–259
https://doi.org/10.1007/3-540-45736-4_11
52 H Fu, Y Sun, Z Xiu. Continuous countercurrent salting-out extraction of 1,3-propanediol from fermentation broth in a packed column. Process Biochemistry, 2013, 48(9): 1381–1386
https://doi.org/10.1016/j.procbio.2013.06.017
53 D Wischral, H Fu, F L Pellegrini Pessoa, N Pereira Jr, S T Yang. Effective and simple recovery of 1,3-propanediol from a fermented medium by liquidliquid extraction system with ethanol and K3PO4. Chinese Journal of Chemical Engineering, 2018, 26(1): 104–108
https://doi.org/10.1016/j.cjche.2017.06.005
54 Z G Li, Y Q Sun, W L Zheng, H Teng, Z L Xiu. A novel and environment-friendly bioprocess of 1,3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system. Biochemical Engineering Journal, 2013, 80: 68–75
https://doi.org/10.1016/j.bej.2013.09.014
55 Z Song, Y Sun, B Wei, Z Xiu. Two-step salting-out extraction of 1,3-propanediol and lactic acid from the fermentation broth of Klebsiella pneumoniae on biodiesel-derived crude glycerol. Engineering in Life Sciences, 2013, 13(5): 487–495
https://doi.org/10.1002/elsc.201200154
56 S K Garg, A Jain. Fermentative production of 2,3-butanediol: a review. Bioresource Technology, 1995, 51(2-3): 103–109
https://doi.org/10.1016/0960-8524(94)00136-O
57 M J Syu. Biological production of 2,3-butanediol. Applied Microbiology and Biotechnology, 2001, 55(1): 10–18
https://doi.org/10.1007/s002530000486
58 S D Birajdar, S Padmanabhan, S Rajagopalan. Repulsive effect of salt on solvent extraction of 2,3-butanediol from aqueous fermentation solution. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(8): 1455–1462
https://doi.org/10.1002/jctb.4450
59 M Matsumoto, R Okuno, K Kondo. Extraction of 2,3-butanediol with aqueous two-phase systems formed by water-miscible organic solvents and inorganic salts. Solvent Extraction Research and Development, 2014, 21(2): 181–190
https://doi.org/10.15261/serdj.21.181
60 J Dai, Y Zhang, Z Xiu. Salting-out extraction of 2,3-butanediol from jerusalem artichoke-based fermentation broth. Chinese Journal of Chemical Engineering, 2011, 19(4): 682–686
https://doi.org/10.1016/S1004-9541(11)60041-4
61 L H Sun, B Jiang, Z L Xiu. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system. Biotechnology Letters, 2009, 31(3): 371–376
https://doi.org/10.1007/s10529-008-9874-3
62 Z Xiao, J R Lu. Generation of acetoin and its derivatives in foods. Journal of Agricultural and Food Chemistry, 2014, 62(28): 6487–6497
https://doi.org/10.1021/jf5013902
63 Z Xiao, J R Lu. Strategies for enhancing fermentative production of acetoin: a review. Biotechnology Advances, 2014, 32(2): 492–503
https://doi.org/10.1016/j.biotechadv.2014.01.002
64 J Dai, W Guan, L Ma, Z Xiu. Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4. Separation and Purification Technology, 2017, 184: 275–279
https://doi.org/10.1016/j.seppur.2017.05.012
65 C Fu, S Xie. Salts and 1-propanol induced aqueous two-phase systems: phase separation and application. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2019, 94(7): 2372–2381
https://doi.org/10.1002/jctb.6036
66 Y Li, J Y Dai, Z L Xiu. Salting-out extraction of acetoin from fermentation broths using hydroxylammonium ionic liquids as extractants. Separation and Purification Technology, 2020, 240: 116584
https://doi.org/10.1016/j.seppur.2020.116584
67 M Bailly. Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination, 2002, 144(13): 157–162
https://doi.org/10.1016/S0011-9164(02)00305-3
68 T Hano, M Matsumoto, T Ohtake, K Sasaki, F Hori, Y Kawano. Extraction equilibria of organic acids with tri-n-octylphosphineoxide. Journal of Chemical Engineering of Japan, 1990, 23(6): 734–738
https://doi.org/10.1252/jcej.23.734
69 B C Wei, Z Y Song, Y Q Sun, Z L Xiu. Salting-out extraction of lactic acid from fermentation broth. The Chinese Journal of Process Engineering, 2012, 12(1): 44–48 (In Chinese)
70 Y Sun, L Yan, H Fu, Z Xiu. Salting-out extraction and crystallization of succinic acid from fermentation broths. Process Biochemistry, 2014, 49(3): 506–511
https://doi.org/10.1016/j.procbio.2013.12.016
71 H Fu, X Wang, Y Sun, L Yan, J Shen, J Wang, S T Yang, Z Xiu. Effects of salting-out and salting-out extraction on the separation of butyric acid. Separation and Purification Technology, 2017, 180: 44–50
https://doi.org/10.1016/j.seppur.2017.02.042
72 Z Li, H Teng, Z Xiu. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system. Process Biochemistry, 2010, 45(5): 731–737
https://doi.org/10.1016/j.procbio.2010.01.011
73 S Xie, C Fu, W Song, Y Zhang, C Yi. Highly efficient synthesis and separation of fuel precursors from the concentrated ABE fermentation broth in a biphasic catalytic process. Fuel, 2019, 242: 41–49
https://doi.org/10.1016/j.fuel.2019.01.015
74 J Lyklema. Simple hofmeister series. Chemical Physics Letters, 2009, 467(46): 217–222
https://doi.org/10.1016/j.cplett.2008.11.013
75 J Traube. The attraction pressure. Journal of Physical Chemistry, 1910, 14(5): 452–470
https://doi.org/10.1021/j150113a003
76 S Xie, W Song, C Yi, X Qiu. Salting-out extraction systems of ethanol and water induced by high-solubility inorganic electrolytes. Journal of Industrial and Engineering Chemistry, 2017, 56: 145–150
https://doi.org/10.1016/j.jiec.2017.07.006
77 S Xie, W Song, C Fu, C Yi, X Qiu. Separation of acetone: from a water miscible system to an efficient aqueous two-phase system. Separation and Purification Technology, 2018, 192: 55–61
https://doi.org/10.1016/j.seppur.2017.09.056
78 C Fu, W Song, C Yi, S Xie. Creating efficient novel aqueous two-phase systems: salting-out effect and high solubility of salt. Fluid Phase Equilibria, 2019, 490: 77–85
https://doi.org/10.1016/j.fluid.2019.03.002
79 Y G Wu, M Tabata, T Takamuku, A Yamaguchi, T Kawaguchi, N H Chung. An extended Johnson-Furter equation to salting-out phase separation of aqueous solution of water-miscible organic solvents. Fluid Phase Equilibria, 2001, 192(12): 1–12
https://doi.org/10.1016/S0378-3812(01)00620-3
80 E Nemati Kande, H Shekaari. Salting-out effect of sodium, potassium, carbonate, sulfite, tartrate and thiosulfate ions on aqueous mixtures of acetonitrile or 1-methyl-2-pyrrolidone: a liquid-liquid equilibrium study. Fluid Phase Equilibria, 2013, 360: 357–366
https://doi.org/10.1016/j.fluid.2013.09.028
81 A Marcilla, F Ruiz, A N García. Liquid-liquid-solid equilibria of the quaternary system water-ethanol-acetone-sodium chloride at 25 °C. Fluid Phase Equilibria, 1995, 112(2): 273–289
https://doi.org/10.1016/0378-3812(95)02804-N
82 A S Afschar, C E Vaz Rossell, R Jonas, A Quesada Chanto, K Schaller. Microbial production and downstream processing of 2,3-butanediol. Journal of Biotechnology, 1993, 27(3): 317–329
https://doi.org/10.1016/0168-1656(93)90094-4
83 M Tabata, M Kumamoto, J Nishimoto. Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction. Analytical Sciences, 1994, 10(3): 383–388
https://doi.org/10.2116/analsci.10.383
84 S Xie, C Yi, X Qiu. Energy-saving recovery of acetone, butanol, and ethanol from a prefractionator by the salting-out method. Journal of Chemical & Engineering Data, 2013, 58(11): 3297–3303
https://doi.org/10.1021/je400740z
85 F S Santos, S G D’Ávila, M Aznar. Salt effect on liquid-liquid equilibrium of water+ 1-butanol+ acetone system: experimental determination and thermodynamic modeling. Fluid Phase Equilibria, 2001, 187 188: 265–274
https://doi.org/10.1016/S0378-3812(01)00541-6
86 B L Hu, X Q Qiu, D J Yang. Separation of butanol-acetone-water system using repulsive extraction. Journal of South China University of Technology. Nature and Science, 2003, 31(12): 58 (in Chinese)
87 C Fu, Z Li, W Song, C Yi, S Xie. A new process for separating biofuel based on the salt+ 1-butanol+ water system. Fuel, 2020, 278: 118402
https://doi.org/10.1016/j.fuel.2020.118402
88 X Han. Improvement on conventional production of butanol. Liaoning Chemical Industry, 1998, 04: 44–46 (in Chinese)
89 P Cen, G T Tsao. Recent advances in the simultaneous bioreaction and product separation processes. Separations Technology, 1993, 3(2): 58–75
https://doi.org/10.1016/0956-9618(93)80006-D
90 P K Grover, R L Ryall. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chemical Reviews, 2005, 105(1): 1–10
https://doi.org/10.1021/cr030454p
91 C Yi, S Xie, X Qiu. Salting-out effect of dipotassium hydrogen phosphate on the recovery of acetone, butanol and ethanol from a prefractionator. Journal of Chemical & Engineering Data, 2014, 59(5): 1507–1514
https://doi.org/10.1021/je401060m
92 S Xie, X Qiu, C Yi. Salting-out effect of tripotassium phosphate on the liquid-liquid equilibria of the (water+ acetone+ 1-butanol+ ethanol) system and the salting-out recovery. Fluid Phase Equilibria, 2015, 386: 7–12
https://doi.org/10.1016/j.fluid.2014.11.013
93 S Xie, C Yi, X Qiu. Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(6): 1860–1867
https://doi.org/10.1002/jctb.4779
94 S Xie, C Yi, X Qiu. Salting-out of acetone, 1-butanol and ethanol from dilute aqueous solutions. AIChE Journal. American Institute of Chemical Engineers, 2015, 61(10): 3470–3478
https://doi.org/10.1002/aic.14872
95 S Xie, W Ji, Y Zhang, Y Zhou, Z Wang, C Yi, X Qiu. Biobutanol recovery from model solutions/fermentation broth using tripotassium phosphate. Biochemical Engineering Journal, 2016, 115: 85–92
https://doi.org/10.1016/j.bej.2016.08.010
96 S Xie, Y Zhang, C Yi, X Qiu. Biobutanol recovery from model solutions using potassium pyrophosphate. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(6): 1229–1235
https://doi.org/10.1002/jctb.5113
97 D Bucher, S Kuyucak. Polarization of water in the first hydration shell of K+ and Ca2+ ions. Journal of Physical Chemistry B, 2008, 112(35): 10786–10790
https://doi.org/10.1021/jp804694u
98 S Xie, X Qiu, C Yi. Separation of a biofuel: recovery of biobutanol by salting-out and distillation. Chemical Engineering & Technology, 2015, 38(12): 2181–2188
https://doi.org/10.1002/ceat.201500140
99 S Xie, Y Zhang, C Yi, X Qiu. Biobutanol recovery from model solutions using potassium pyrophosphate. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(6): 1229–1235
https://doi.org/10.1002/jctb.5113
100 S Xie, X Qiu, W Ji, C Yi. Salting-out of 1,3-propanediol from aqueous solutions by inorganic electrolytes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(11): 2793–2801
https://doi.org/10.1002/jctb.4886
101 X J Ji, H Huang, P K Ouyang. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 2011, 29(3): 351–364
https://doi.org/10.1016/j.biotechadv.2011.01.007
102 W H Tsai, H Y Chuang, H H Chen, Y W Wu, S H Cheng, T C Huang. Application of sugaring-out extraction for the determination of sulfonamides in honey by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography. A, 2010, 1217(49): 7812–7815
https://doi.org/10.1016/j.chroma.2010.10.008
103 P B Dhamole, P Mahajan, H Feng. Sugaring out: a new method for removal of acetonitrile from preparative RP-HPLC eluent for protein purification. Process Biochemistry, 2010, 45(10): 1672–1676
https://doi.org/10.1016/j.procbio.2010.06.020
104 C Zhang, K Huang, P Yu, H Liu. Sugaring-out three-liquid-phase extraction and one-step separation of Pt(IV), Pd(II) and Rh(III). Separation and Purification Technology, 2012, 87: 127–134
https://doi.org/10.1016/j.seppur.2011.11.032
105 J Zhang, F Myasein, H Wu, T A El-Shourbagy. Sugaring-out assisted liquid/liquid extraction with acetonitrile for bioanalysis using liquid chromatography-mass spectrometry. Microchemical Journal, 2013, 108: 198–202
https://doi.org/10.1016/j.microc.2012.10.024
106 C Tubtimdee, A Shotipruk. Extraction of phenolics from Terminalia chebula Retz with water-ethanol and water-propylene glycol and sugaring-out concentration of extracts. Separation and Purification Technology, 2011, 77(3): 339–346
https://doi.org/10.1016/j.seppur.2011.01.002
107 L Axelsson, M Franzén, M Ostwald, G Berndes, G Lakshmi, N H Ravindranath. Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels, Bioproducts & Biorefining, 2012, 6(3): 246–256
https://doi.org/10.1002/bbb.1324
108 K K Cheng, X B Zhao, J Zeng, J A Zhang. Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioproducts & Biorefining, 2012, 6(3): 302–318
https://doi.org/10.1002/bbb.1327
109 M Sauer, D Porro, D Mattanovich, P Branduardi. Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 2008, 26(2): 100–108
https://doi.org/10.1016/j.tibtech.2007.11.006
110 Y Sun, S Zhang, X Zhang, Y Zheng, Z Xiu. Ionic liquid-based sugaring-out and salting-out extraction of succinic acid. Separation and Purification Technology, 2018, 204: 133–140
https://doi.org/10.1016/j.seppur.2018.04.064
111 M A Abdel-Rahman, Y Tashiro, K Sonomoto. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 2011, 156(4): 286–301
https://doi.org/10.1016/j.jbiotec.2011.06.017
112 L Yan, Y Q Sun, Z L Xiu. Sugaring-out extraction coupled with fermentation of lactic acid. Separation and Purification Technology, 2016, 161: 152–158
https://doi.org/10.1016/j.seppur.2016.01.049
113 J Y Dai, C J Liu, Z L Xiu. Sugaring-out extraction of 2,3-butanediol from fermentation broths. Process Biochemistry, 2015, 50(11): 1951–1957
https://doi.org/10.1016/j.procbio.2015.08.004
114 J Y Dai, L H Ma, Z F Wang, W T Guan, Z L Xiu. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation. Bioprocess and Biosystems Engineering, 2017, 40(3): 423–429
https://doi.org/10.1007/s00449-016-1710-x
115 X Zhang, T Kobayashi, S Adachi, R Matsuno. Lipase-catalyzed synthesis of 6-O-vinylacetyl glucose in acetonitrile. Biotechnology Letters, 2002, 24(13): 1097–1100
https://doi.org/10.1023/A:1016018701961
116 S Kittaka, M Kuranishi, S Ishimaru, O Umahara. Phase separation of acetonitrile-water mixtures and minimizing of ice crystallites from there in confinement of MCM-41. Journal of Chemical Physics, 2007, 126(9): 091103
https://doi.org/10.1063/1.2712432
117 M N Gupta, R Tyagi, S Sharma, S Karthikeyan, T P Singh. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 °C. Three-dimensional structure of a treated serine proteinase at 2.2 Å resolution. Proteins, 2000, 39(3): 226–234
https://doi.org/10.1002/(SICI)1097-0134(20000515)39:3<226::AID-PROT50>3.0.CO;2-Y
118 P B Dhamole, P Mahajan, H Feng. Phase separation conditions for sugaring-out in acetonitrile-water systems. Journal of Chemical & Engineering Data, 2010, 55(9): 3803–3806
https://doi.org/10.1021/je1003115
119 B Wang, H Feng, T Ezeji, H Blaschek. Sugaring-out separation of acetonitrile from its aqueous solution. Chemical Engineering & Technology, 2008, 31(12): 1869–1874
https://doi.org/10.1002/ceat.200800003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed